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Abstract

Given a source and its edited version performed
based on human instructions in natural lan-
guage, how do we extract the underlying edit
operations, to automatically replicate similar
edits on other images? This is the problem of
reverse designing, and we present TAME-RD,
a model to solve this problem.TAME-RD au-
tomatically learns from the complex interplay
of image editing operations and the natural lan-
guage instructions to learn fully specified edit
operations. It predicts both the underlying im-
age edit operations as discrete categories and
their corresponding parameter values in the con-
tinuous space. We accomplish this by mapping
together the contextual information from the
natural language text and the structural differ-
ences between the corresponding source and
edited images using the concept of pre-post ef-
fect. We demonstrate the efficiency of our net-
work through quantitative evaluations on mul-
tiple datasets. We observe improvements of 6–
10% on various accuracy metrics and 1.01X-4X
on the RMSE score and the concordance corre-
lation coefficient for the corresponding parame-
ter values on the benchmark GIER dataset. We
also introduce I-MAD, a new two-part dataset:
I-MAD-Dense, a collection of approximately
100K source and edited images, together with
automatically generated text instructions and
annotated edit operations, and I-MAD-Pro, con-
sisting of about 1.6K source and edited images,
together with text instructions and annotated
edit operations provided by professional editors.
On our dataset, we observe absolute improve-
ments of 1–10% on the accuracy metrics and
1.14X–5X on the RMSE score. [Project Page]

1 Introduction

The prevalence of digital media in educa-
tion (Haleem et al., 2022), healthcare (Ventola,
2014), business and entertainment (Fitzgerald et al.,
2022) comes with the need for large-scale image

*Work partly done as an intern at Adobe Inc.

designing. It involves multiple image adjustment
operations, ranging from image-level filtering (Mit-
tal et al., 2021; Zhou et al., 2023; Jing et al., 2022;
Krawczyk et al., 2007) to pixel-level manipula-
tions (Steininger et al., 2023). This has opened up
new research avenues focusing on making multi-
adjustment image designing an intuitive and com-
fortable experience for editors. From the editors’
perspective, image designing can be broadly cat-
egorized into forward and reverse designing. For-
ward designing refers to editors planning and ap-
plying multi-adjustment edit operations on source
images based on their specific end goals. Con-
ventional image editing tools (Systems, 2002) are
tailored for forward designing. Reverse design, by
contrast, refers to extracting multi-adjustment edit
operations applied between given pairs of source
and edited images. The operations obtained can
then be reapplied on other images in downstream
pipelines (Xue et al., 2020; Rossler et al., 2019).

However, the realm of reverse designing remains
relatively unexplored compared to forward design-
ing. Complex many-to-many relationships in map-
pings from source to edited images contribute to
this gap, making it challenging to establish opti-
mization criteria solely based on factors like the
total number of edit operations or specific parame-
ter value ranges. Additionally, the lack of standard-
ization in forward design practices among image
editors further complicates this challenge. Reverse
designing holds significant potential for generat-
ing comprehensive editing histories, facilitating the
replication and reuse of large volumes of image
assets. The availability of editing history proves
advantageous across various applications includ-
ing image editing revision control (Rinaldi et al.,
2023), automatic tutorial generation (Grabler et al.,
2009), editing visualization (Feng et al., 2023),
quality control (Jiang et al., 2021), and forensic
analysis (Rossler et al., 2019). However, relying
only on the pairs of source and edited images for
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Figure 1: Image Multi-Adjustments. Given a source image, its edited version, and contextual information in natural language,
we estimate the set of underlying edit operations and the corresponding parameter values that map the source image to the edited
image. We show such edit operations estimated with our approach on six image pairs. We also present a new dataset called
I-MAD to enable further research.

reverse designing may be insufficient. This limita-
tion arises from the need to interpret the creative
decisions and goals of the editor in the reverse de-
sign process. To address this, we propose a more
promising approach that involves incorporating an
additional modality to provide contextual informa-
tion. We integrate the editors’ intent expressed
through natural language text. This might eluci-
date the forward design mechanism they employed
or even discern specific reasons or details asso-
ciated with the editing process that transformed
the source image into the edited image. Docu-
menting machine-level micro-instructions that can
be directly fed to image editing softwares is not
scalable, particularly when dealing with a large
number of images. Consequently, any textual in-
formation available for reverse designing purposes
will primarily be high-level, vague, and in natural
language. Our multimodal approach seamlessly
integrates image pairs with text-based contextual
cues, enabling a more nuanced understanding of
the editing process that led to obtaining the edited
image from the source image. The inclusion of a
text component proves invaluable in complement-
ing visual information, particularly in instances of
noise or insufficient clarity. This holistic strategy
endeavors to address the gap in reverse design re-
search by prioritizing the interplay between visual
and language-based sources of information.

Main Contributions. We introduce a multi-
modal learning method tailored for reverse design
in image editing. The novel components include:

1. Image Multi-Adjustment Prediction. We
present TAME-RD, a multimodal multitask
learning model designed to predict a sequence
of image editing operations along with their

parameter values. By blending structural
and semantic correlations in the pixel space
through our use of the pre-post effect, and
integrating it with the accompanying textual
information,TAME-RD can predict the under-
lying micro-instructions for the editing pro-
cess. This sets the foundation for a paradigm
shift in our capability to learn editing meta-
data from image pairs.

2. Image Multi-Adjustment Dataset. We in-
troduce a two-part dataset named I-MAD to
advance research in reverse design and related
tasks. It consists of a set of 100K images
edited through an automated pipeline (I-MAD-
Dense), and a set of 1.6K image pairs edited
by professional editors (I-MAD-Pro). Differ-
ent from existing image editing datasets such
GIER (Shi et al., 2020), our dataset contains
rich annotations of edit operations and their
parameter values from professional editors.

3. Controllable Reverse Design. To the best
of our knowledge, we present the first con-
trollable pipeline for reverse design, i.e., es-
timating the specific edit parameter values
in addition to the edit operation names. Our
approach equips editors with a complete set
of machine-level operations shaping edited
images, offering unparalleled customization.
This stands in stark contrast to the current state
of the art, which, at best, can only estimate
image edit operations.

We show quantitative evaluations on two datasets,
GIER (Shi et al., 2020), and I-MAD, on the joint
tasks of (a) multi-label classification and multi-
valued regression, (b) multi-class classification and
single-valued regression, and (c) multi-class classi-
fication and multi-valued regression. On the GIER
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Figure 2: TAME-RD: Is (source image), It (edited image),
and c (text instructions as a sequence of words, optional) are
the inputs to our network. We extract features fppe that capture
the structural differences between the two images Is and It
based on the pre-post effect (Sec. 3.2) and fc corresponding
to the semantically encoded features of c (Sec. 3.3). Our
fused latent features hmtl incorporate both the structural and
the contextual information to enable the prediction of edit
operations that are both numerically accurate and plausible
to human users. Our predictions consist of categorical edits
paired with the corresponding parameter values. We achieve
this by separating hmtl into hcls and hreg , which we use for
our classification and regression branches, respectively.

dataset, compared to the closest available baselines,
we report absolute improvements of 1−10% on the
relevant evaluation metrics of accuracy, precision,
and F1 score. We also report RMSE and concor-
dance correlation coefficient (CCC) improvements
of 1.01X − 4X compared to the baselines. On our
proposed dataset I-MAD, compared to the base-
lines, we report absolute improvements of 1− 10%
on the same evaluation metrics, and 1.1X − 5X
improvement in RMSE and CCC.

2 Related Work

We provide a brief overview of recent works on
understanding the relationship between two images,
and datasets containing comparisons between two
images.

Forward Design. Current image editing ap-
proaches, including those using language-based
instructions (Jiang et al., 2021; Shi et al., 2021; Fu
et al., 2022), excel at forward design by automati-
cally applying specific image edits. However, they
lack the key capability for reverse design, which is
extracting edit operations given source and edited
images. Style transfer (Jing et al., 2019) and image-
to-image translation (Kim et al., 2022) methods
directly apply changes from one image onto an-
other. However, they do not provide control over
the multi-adjustments that underlie the entire trans-
formation as required for reverse design.

Relating Two Images. Reverse design requires
an understanding of how a source and an edited
image are related. From this perspective, we note
recent methods relating two images. Methods such
as (Yan et al., 2021; Guo et al., 2022) take in an

Gaussian Blur 
Kernel size (5,5)

Gaussian Blur 
Kernel size (5,5)

Source Target

(A)

(B) (B)

(A)

Figure 3: Source (A) and (B) undergo the exact same oper-
ation to give edited (A) and (B), respectively. However, the
blur is more apparent in edited (B) than in edited (A) because
of more foreground elements closer to the camera.

image pair and output a sentence describing their
similarities and differences. Other methods focus
on computing bounding boxes for image elements
such as objects that were altered or removed be-
tween a source and an edited image (Sachdeva and
Zisserman, 2023). These methods focus entirely on
the low-level image structures and do not consider
any higher-level semantic relationships. Closer to
the reverse design pipeline, Tan et al. (2019) pre-
dict categorical edit operations performed between
image pairs but do not estimate the correspond-
ing parameter values that are necessary to close
the loop for reverse design. Jiang et al. (2021)
leverages this work (Tan et al., 2019) to check the
quality of its forward design-based generated out-
put. There don’t seem to be any recent attempts
close enough to explore reverse design.

Paired Image Datasets. Image datasets are avail-
able aplenty, but only a handful of them (Jham-
tani and Berg-Kirkpatrick, 2018; Suhr et al., 2018)
include image pairs semantically connected by
human-readable descriptions. There are also
datasets for language-guided image editing (Fu
et al., 2022), performing style transfer (Fu et al.,
2020), adding, altering, and removing objects (Sun
et al., 2021; Park et al., 2022), and storing edit op-
erations performed between image pairs (Shi et al.,
2020). However, these datasets lack tool-level de-
tails on how source images were edited, and are,
therefore, not sufficient to train supervised reverse
design pipelines.

3 TAME-RD: Our Approach

We present our algorithm, TAME-RD, to detect
image multi-adjustments and close the loop for re-
verse image design. We formally state the problem
in Sec. 3.1, and explain all the components of our
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approach in Secs. 3.2-3.4. Fig. 2 gives an overview
of the proposed approach.

3.1 Problem Formulation

We consider two images, source Is and edited It.
They are related as follows:

It = E (Is;θ) (1)

where E represents the set of edit operations done
on Is and θ ∈ Rd represents the flattened vector
consisting of all the corresponding parameter val-
ues. Our goal in this work is to identify E and θ
given Is and It. This problem is non-trivial because
of two primary reasons:

1. When we consider two or more edit opera-
tions, a one-to-one mapping E between any
given image pair Is and It generally does not
exist. Different combinations of individual
edit operations performed with different pa-
rameter values on Is can result in similar It
(Fig. 4), which can only be resolved with ad-
ditional context. Conversely, the same set of
edit operations performed with the same pa-
rameter values on two different images Is1
and Is2 can result in vastly different-looking
edited images It1 and It2 (refer Fig. 3).

2. Given Is and It, we can compute the struc-
tural differences between the two. However,
that, by itself, does not reveal any semantic re-
lationship between the two, which can make a
particular solution pair (E∗,θ∗) more plausi-
ble than the rest to human users (refer Fig. 5).

To approach these issues, we first consider a fi-
nite set of N categorical operations {E1, . . . , EN}
to represent the function space of E. We note that
images in practice are constrained to lie within a
finite range in the pixel space (most commonly

Source Image Context 2

Add a filter that mimics 
the warm, golden light of 

a summer sunset

Context 1

Make the image look 
historic and aged.

SUMMER FILTER

Target Image Target Image 

SEPIA FILTER

Figure 5: Given different contexts (as textual instructions in
our case), the plausible edit operations on the same source
image can change significantly.

between the values 0 and 255 for each pixel); there-
fore, the parameter values θ also lie in a finite range
by design. Without loss of generality, we consider
θ ∈ R(0,1]diN , where di denotes the dimensional-
ity of the parameter values θi corresponding to Ei,
and θi = 0 denotes Ei is absent from the partic-
ular instance of E. Using this representation, we
address the first issue by learning E and θ given
a large training corpus of image pairs (Is, It) and
their corresponding edit operations. To address the
second issue, we note that textual descriptions of
the edit operations, if created in the forward design
process, can provide the relevant context for the ed-
its and help understand the semantic relationships
between Is and It. To this end, we can rewrite the
relationship between Is and It as

It = E(Is, c;θ), (2)

where c denotes the textual instructions as a se-
quence of words in a dictionary. Consequently, our
goal becomes identifying E and θ using Is, It and
c. Since the data available in this case is multi-
modal in nature, we propose a multimodal learning
network consisting of two streams. We design one
stream (Stream 1) to capture the information avail-
able from the image pair (Is, It), and the other
stream (Stream 2) to learn semantic information
from the text c that complements the information
learned in Stream 1. Since we consider the func-
tion space of E to be a finite set of categorical edit
operations, we can model the problem of solving
for E as a multilabel classification problem. Cor-
respondingly, solving for θ becomes a multi-value
regression task. Our goal is to jointly solve for
E and θ. Therefore, we propose a multimodal
multitask learning (MML) network, which we call
TAME-RD. Next, we discuss the different compo-
nents of TAME-RD’s MML network.
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3.2 Stream 1: Pre-Post Effect From Images
We design this stream based on the concept of a
specific type of treatment effect referred to as pre-
post effect. It is widely used to understand the
effectiveness of interventions introduced in fields
like economics, medicine and healthcare, and edu-
cation (Cuijpers et al., 2017; Estrada et al., 2019).
Pre-post effect (δ) essentially compares the out-
comes of a group of individuals before (O0) and
after(O1) receiving treatment or intervention.

δ = O1 −O0 (3)

While it may reveal some characteristics of the
treatment, it primarily reflects the treatment’s im-
pact on the subjects’ outcomes. In our problem
setup, we have access to an edited image that was
the outcome of treatment (edit operations) received
by the source image. Consequently, we use the pre-
post effect to capture the distribution underlying
the changes between the two images, to understand
the nature (edit operation types) and the extent (cor-
responding parameter values) of the change. Fol-
lowing Eqn. 3, we define δI as

δI = It − Is (4)

and use it as the input to this mode. Now we use
ResNet-18, which is a variant of the ResNet archi-
tecture, that has been pre-trained on the ImageNet
dataset (Deng et al., 2009), to encode the visual
features from δI to get fppe. This will allow us
to effectively capture the information available in
δI despite its big range of values compared to the
actual images Is and It (0, 255). Therefore,

fppe = RESNET18(δI) (5)

3.3 Stream 2: Context From Language
In certain situations, the difference between the
edited and original images, denoted as δ or the
pre-post effect, can be sufficient to determine the
specific editing operation due to the distinctive
characteristics displayed by δ. However, as men-
tioned earlier, it is common for δ to lack distinct
uniqueness, or the inference of the editing oper-
ation might be influenced by various factors or
conditions. To address this issue, we utilize textual
information (c) as a valuable source to correctly
interpret the significance of δ. This textual infor-
mation is presented as natural language sentences,
which offer insights into the changes that may not
be directly discernible from the images themselves.

We employ pre-trained Siamese BERT networks
(SBERT) (Reimers and Gurevych, 2019) to encode
these sentences. SBERT embeddings are designed
to capture semantic similarities rather than a verba-
tim representation of the sentence. This approach
ensures that the model’s behavior remains consis-
tent even with changes in the wording of the text, as
long as the underlying semantics of the text remain
unchanged. Therefore, we can define the textual
features as:

fc = SBERT (c) (6)

3.4 Multitask Network

The features extracted from stream 1, denoted as
fppe, and the features obtained from stream 2, de-
noted as fc, are combined through concatenation.
These concatenated features are then fed into a
fully connected layer, which, therefore, produces
an embedding capable of capturing the relation-
ships between the two modalities. Now in order to
solve the multitask part of the problem, we choose
the first half (hcls) of this embedding to represent
the feature corresponding to the classification task
while the second half (hreg) represents the features
needed for the regression task. Each of these em-
beddings are then passed into equal number of fully
connected neural network layers to learn their re-
spective tasks. Therefore,

hmtl = FC(concat(fppe, fc)) (7)

hcls = hmtl[:, emtl] (8)

hreg = hmtl[emtl, :] (9)

In this work, we have taken emtl =
1
2 len(hmtl)

For training the multitask network, we use the
following loss function

Lnet = Lmlcls + λLreg, (10)

where Lmlcls is the loss function for learning the
multilabel classification task, and Lreg is the loss
function used for learning the multi-valued regres-
sion task. We consider the cross-entropy loss func-
tion for Lmlcls and the ℓ1 loss for Lreg.

4 Datasets

We provide details on the datasets we experiment
with: the benchmark GIER dataset (Shi et al., 2020)
and our proposed dataset I-MAD.
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4.1 GIER Dataset

The Grounded Image Editing Request (GIER)
dataset (Shi et al., 2020) comprises 6,179 source
and edited image pairs with pixel- and image-level
edit operations. The dataset includes 23 edit oper-
ations and natural language instructions for each
image pair. On average, each image has about 3.21
edit operations. However, GIER is curated from
public sites like Reddit.com and Zhopped.com, and
as such, does not provide parameter values for the
edit operations. In our work, we augmented the
GIER dataset with approximately computed pa-
rameter values based on edit operation definitions
used by (Shi et al., 2020) for language-based im-
age editing. We provide the details in the appendix,
acknowledging the difficulty in guaranteeing identi-
cal values used by the creators for obtaining edited
images. Given multiple potential operations for
each image pair (hence multi-label), we associate
a parameter value with each operation for every
image pair.

4.2 I-MAD: Our Dataset

GIER is the closest available dataset for our use
case. However, crucially for reverse design pro-
cesses, the exact parameter values associated with
the edit operations are unavailable. To address this
gap, we introduce a novel dataset named the Image
Multi-Adjustment Dataset (I-MAD). I-MAD con-
sists of two separate parts: I-MAD-Dense and I-
MAD-Pro. Both parts contain paired source im-
ages, edited images, and natural language text in-
structions or contextual information underlying the
edit operations. The triplets are annotated by the
set of operations performed on the source image
to obtain the edited image and also their corre-
sponding parameter value. We only consider the
set and not the sequence of the operations as non-
commutative operations (such as brightness and
contrast) incur negligible errors when changing the
sequence, within the operating ranges computed
from GIER and our dataset. I-MAD-Dense and I-
MAD-Pro mainly differ in the preparation methods
to obtain the triplets. We discuss the highlights for
each of these subsets of I-MAD.

I-MAD-Dense. This dataset segment comprises
100K triplets generated in an uncontrolled setting.
We obtained the source images from COCO (Lin
et al., 2014), which has been vetted to have non-
harmful content (Ha et al., 2024). COCO contains
everyday objects and humans in natural scenes in a

variety of styles, including paintings and cartoons.
We applied 5 (without repetition) edit operations
to each source image, selected randomly from a
pool of 12 operations in total. We provide more de-
tails of the operations in the appendix. For the text
descriptions in the triplets, we gathered 20 to 25
vaguely phrased descriptions in English for each of
the 12 edit operations. However, these descriptions
do not provide information about the parameter val-
ues associated with the edit operations, nor do they
contain image-specific details. They are generic de-
scriptions, such as “Create an image that has a more
balanced and natural appearance" or “Add a filter
that mimics the warm and golden light of a summer
sunset." For each of the 5 randomly selected opera-
tions, we randomly chose a sentence from their set
of text descriptions. We also choose the parameter
values for the edit operations randomly within pre-
determined ranges. Despite its random nature, this
approach holds significance. A network capable of
accurately identifying image edit operations would
inherently grasp their underlying distribution space,
avoiding mere memorization of coincidental opera-
tion sequences. From a real-world perspective, pro-
viding high-level natural language instructions for
edit operations is quicker and more straightforward
for individuals compared to crafting image-specific
instructions. I-MAD-Dense’s intentional lack of
one-to-one correspondence and the inclusion of
randomness in edit operations forces the model to
comprehend the individual contributions of each
image edit operation rather than relying on memo-
rized sequences. Additionally, I-MAD-Dense also
benefits from being created at a fraction of the cost
of human-curated datasets.

I-MAD-Pro. To gather this segment of I-MAD,
we hired professional editors, at a payment rate in
agreement with them. They were tasked with edit-
ing images using their unique creative processes
and then supplying us with both the source and the
edited images. Additionally, they were required
to submit detailed textual instructions in English
outlining their workflows, along with a breakdown
of the editing operations conducted between the
source and the edited images. This included
specifying the parameter values associated with
each operation. Given the intensive nature of
this data collection process, we have collected
a set of 1,674 data samples spanning 30 edit
operations at about 4.55 operations per image
pair. The textual instructions provided by editors
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are intentionally high-level, similar to the GIER
dataset. However, different from GIER, which
collected edited images from public platforms
with no explicit guardrails for quality, our edited
images were vetted for quality by domain experts.
Our editors also vetted the images in our dataset
to ensure there was no identifiable personal or
private content, as well as no offensive or harmful
content. Any images they flagged with such
content were filtered out of the dataset. The editors
were given samples from the COCO dataset (but
these samples are different than the ones used to
create I-MAD-Dense) following the usage terms
in its public license. For the edit operations and
natural language instructions our editors provided,
they agreed to transfer us the ownership as part of
the hiring process.

For our experiments, we individually normalized
the parameter values for each edit operation based
on their observed ranges. This approach ensured
consistent representation across all the operations.

5 Experiment Results and Analyses

We discuss the hyperparameter details and metrics
in Sec. 5.1, baselines and quantitative evaluations
in Sec. 5.2, and ablation experiments in Sec. 5.3.

5.1 Training Details and Evaluation Metrics

We test our model on three datasets, namely, I-
MAD-Dense, I-MAD-Pro, and GIER. To train
our model on each of the two segments of I-
MAD (Dense and Pro), we adhere to conventional
practices by partitioning the dataset into three sub-
sets. In GIER, we use the standard train, valida-
tion, and test split ratios provided in the dataset.
We use a batch size of 32 for both datasets. The
models are trained for 300 epochs. We use Adam
optimizer with a learning rate of 0.0001. All our
results are generated on NVIDIA GeForce GTX
2080 Ti GPU and all codes were implemented us-
ing Pytorch (Paszke et al., 2019). We evaluate
our multi-label classification tasks using standard
metrics: accuracy, average precision (AP), and F1.
For multi-valued regression, we employ root mean
squared error (RMSE) and concordance correlation
coefficients (CCC).

5.2 Quantitative Comparisons

Given the absence of prior methods for our prob-
lem (Sec. 3.1), we compare with the most relevant

state-of-the-art method of Tan et al. (2019). For
comprehensiveness and completeness, we also in-
vestigate various baseline approaches.

1. Tan et al. (2019). Tan et al. (2019) introduce a
transformer-based model with a dynamic rela-
tional attention mechanism to compute align-
ment scores between source and edited image
features during each decoding step, preventing
information loss. While originally designed
for text generation, we re-purpose their model
and retrain it to generate sequences of edit
operations given source and edited images.
However, their approach cannot estimate pa-
rameter values. Table 1 (rows 3, 15, 28) com-
pares the performance of Tan et al. (2019)’s
approach with ours. We note that their ap-
proach of defining image dissimilarity based
on learned feature alignment fails to adapt to
scenarios where multiple edit operations with
diverse parameter values are applied to source
images. By contrast, our approach explicitly
models observed differences between images
to learn the fine-grained changes and learns
the continuous parameter space of the edit op-
erations, leading to substantial performance
gains.

2. Modification of Tan et al. (2019). For com-
pleteness, we also compare with a modified
version of Tan et al. (2019), where we replace
their LSTM layer, which generates text sen-
tence outputs, with an MLP to perform multil-
abel classification. We report the performance
of this modified model in Table 1 (rows 4, 16,
29). This change does not significantly alter
the overall performance of Tan et al. (2019).

3. CLIP-Based Backbone. We replace the
ResNet-18 backbone with CLIP (Radford
et al., 2021) in Stream 1 by computing dif-
ferences between CLIP-derived features for
source and edited images. Also, in Stream 2,
we replace the SBERT features with CLIP fea-
tures. Importantly, we maintain consistent fea-
ture sizes from the pre-trained models of both
CLIP and ResNet-18. This ensures that the
overall parameter count remains unchanged
in the CLIP-based architecture. We report the
performance of this architecture in Table 1
(rows 6, 18, 31). With the same parameter
count, the performance differences between
the CLIP and ResNet-18 variants highlight the
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advantages of our Stream 1 design.

4. Dual Image Encoders with ResNet in
TAME-RD. To understand the usefulness of
the features we learn from image differences,
we experiment with a variation that uses indi-
vidual image encoders for the source and the
edited images. We complete this pipeline by
concatenating the features obtained from each
of the image encoders to form fimg, unlike
fppe in TAME-RD. We keep the rest of the
network the same as TAME-RD. This archi-
tecture leads to significant performance drops
(Table 1, rows 7, 19, 32) due to its focus on
the individual image features rather than a nu-
anced understanding of the image differences.
This further corroborates the non-trivial nature
of learning from image differences.

5. TAME-RD with Shallow CNN backbone.
We replace our ResNet-18 backbone with a
shallow CNN (Table 1, rows 5, 17, 30) to in-
vestigate the contributions of the additional
parameter load in our proposed ResNet back-
bone. The ResNet backbone indeed leads to
significant gains over a shallow CNN.

6. Dual Image Encoders with shallow CNN
in TAME-RD. We also use shallow CNN
architectures to encode the source and the
edited images separately and then combine
them with the text features to learn the image
edit operations and the parameter values. We
report this baseline in Table 1 (rows 8, 20, 33).

7. GPT-4 Predictor. We prompt GPT-
4 (Achiam et al., 2023) to act as an expert
editor and ask it to solve our specific task by
providing it with source and edited images
and corresponding text descriptions (Table 1,
rows 2, 14, 27). We report the full prompt
in our appendix. While GPT-4 performs rela-
tively well in I-MAD-Dense, it fails to make
any predictions for 95 and 327 samples in I-
MAD-Pro and GIER.

8. Most Frequent Operations. To establish
a performance lower-bound, we use a brute-
force approach that simply assigns the top five
most frequent operations and the correspond-
ing expected parameter values for all the im-
age pairs in the datasets (Table 1, rows 1, 26).
Since I-MAD-Dense was a result of random

Table 1: Quantitative Results. We show the quan-
titative performances on our proposed I-MAD and
GIER (Shi et al., 2020). Bold denotes best, underline
denotes second-best. pt = pretrained ResNet18, fs =
ResNet18 trained from scratch. We observe an overall
state-of-the-art performance of our proposed method.
The higher AP and F1 of the ResNet50 backbone are
due to overfitting. ∗ GPT-4 values only computed for
samples where it could provide results. It failed to pro-
vide any parameter values for I-MAD-Pro.

Data Method Evaluation Metrics

Acc. ↑ AP ↑ F1 ↑ RMSE ↓ CCC ↑
1

I-
M

A
D

-P
ro

(∼
1

K
sa

m
pl

es
)

Most Freq. 0.210 0.451 0.398 0.270 0.191
2 GPT-4 Pred.∗ 0.017 0.585 0.383 × ×
3 Tan et al. (2019) 0.026 0.001 0.003 − −
4 Modified Tan et al. (2019) 0.650 0.001 0.002 − −
5 Shallow CNN backbone 0.877 0.998 0.998 0.095 0.877
6 CLIP backbone 0.809 0.999 0.999 0.086 0.889
7 Dual Enc. ResNet18 0.802 0.998 0.998 0.087 0.886
8 Dual Enc. Shallow CNN 0.879 0.998 0.998 0.100 0.883
9 Only Stream 1 0.889 0.999 0.999 0.086 0.893

10 Only Stream 2 0.894 0.944 0.933 − −
11 ResNet50 backbone 0.903 0.999 0.999 0.077 0.917
12 TAME-RD (Ours, pt) 0.889 0.999 0.999 0.084 0.906
13 TAME-RD (Ours, fs) 0.896 0.999 0.999 0.090 0.882

14
I-

M
A

D
-D

en
se

(1
00

K
sa

m
pl

es
) GPT-4 Pred. 0.951 0.960 0.971 19.30 0.001

15 Tan et al. (2019) 0.453 0.002 0.002 − −
16 Modified Tan et al. (2019) 0.448 0.002 0.002 − −
17 Shallow CNN backbone 0.780 0.944 0.966 0.261 0.440
18 CLIP backbone 0.709 0.765 0.875 0.398 0.047
19 Dual Enc. ResNet18 0.747 0.736 0.794 0.377 0.044
20 Dual Enc. Shallow CNN 0.544 0.950 0.966 0.345 0.229
21 Only Stream 1 0.783 0.827 0.874 0.386 0.098
22 Only Stream 2 0.794 0.818 0.866 − −
23 ResNet50 backbone 0.799 0.995 0.997 0.294 0.415
24 TAME-RD (Ours, pt) 0.841 0.855 0.896 0.258 0.447
25 TAME-RD (Ours, fs) 0.878 0.998 0.999 0.182 0.775

26

G
IE

R
(S

hi
et

al
.,

20
20

)(
∼

6
K

sa
m

pl
es

)

Most Freq. 0.660 0.303 0.646 32.58 0
27 GPT-4 Pred.∗ 0.510 0.458 0.71 125.2 0.096
28 Tan et al. (2019) 0.151 0.007 0.007 − −
29 Modified Tan et al. (2019) 0.149 0.007 0.007 − −
30 Shallow CNN backbone 0.707 0.902 0.940 4.516 0.406
31 CLIP backbone 0.737 0.524 0.570 4.614 0.061
32 Dual Enc. ResNet18 0.463 0.763 0.842 4.562 0.236
33 Dual Enc. Shallow CNN 0.562 0.858 0.911 4.542 0.332
34 Only Stream 1 0.656 0.691 0.787 4.576 0.095
35 Only Stream 2 0.534 0.568 0.673 − −
36 ResNet50 backbone 0.727 0.686 0.732 4.599 0.414
37 TAME-RD (Ours, pt) 0.745 0.749 0.834 4.514 0.447
38 TAME-RD (Ours, fs) 0.700 0.915 0.949 4.515 0.413

assignment of operations, we only consider
I-MAD-Pro and GIER for this experiment.

5.3 Ablation Experiments
We perform the following two ablations.

1. Contribution of each stream. To understand
the contributions of Streams 1 and 2, we run
TAME-RD on both GIER and I-MAD by re-
moving one stream at a time. Table 1 (rows 9,
21, 34, and 10, 22, 35) shows that the perfor-
mance of either stream is comparable to the
other, but when combined, they improve the
end-to-end performance by a big margin. This
corroborates our discussions in Sec. 3.1. In-
terestingly, our Stream 1 also outperforms the
state-of-the-art baseline of Tan et al. (2019),
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Source TargetRequest

Clean up and 
make colors pop? 
This was my 
grandfather on 
Father’s Day 
around 1956. 

Ground Truth

Brightness   1.3
Contrast    -33.6     
Hue              1.0
Lightness     1.3
Saturation    1
Sharpness    0.3
Tint               1.5

Our Predictions

Brightness    1.2
Contrast       -0.1     
Hue               0.75
Lightness      0.91
Saturation     1.2
Sharpness     0
Tint                1.16

Enhance the 
image with a 
wintry, icy feel. 
Create it’s warm 
and inviting 
version. 

Summer    1
Winter       1

Summer       0.4
Winter          1.32

Give the image a 
vintage look. 
Duplicate the 
image in a flipped 
orientation. 

Flip         1
Sepia      1

Flip             1.19
Sepia          0.97

A

B

C

Figure 6: Qualitative Results. We show some qualitative results of our method. Row A is from the GIER
dataset (Shi et al., 2020), and rows B and C are from our dataset I-MAD-Dense. We note that our method matches
the ground truth for a large variety of edit operations.

which similarly uses only images to predict
the edit operations. This further highlights
the contribution of the pre-post effect in the
learning process.

2. Increasing TAME-RD’s parameters. We
compare two variants, one with a ResNet-
18 backbone and the other with a ResNet-50
backbone, to investigate whether increasing
the model parameters leads to better perfor-
mance (Table 1, rows 11, 23, 36). We note that
more parameters do not necessarily improve
performance. TAME-RD with the ResNet-
50 backbone has poorer overall performance
compared to ResNet-18 due to overfitting, in-
dicating our task cannot be solved by merely
increasing the network complexity.

5.4 Qualitative Results
We also show some qualitative results of our
method on GIER and I-MAD-Dense in Fig. 6.

6 Conclusion

We have presented TAME-RD, a method to au-
tomatically detect fully-specified edit operations
given pairs of source and edited images, and option-
ally, contextual information in the form of natural
language text. Our fully-specified edit operations
consist of categorical edits paired with correspond-
ing parameter values. We have also proposed a

corresponding dataset I-MAD, consisting of 100K
tuples (source image, edited image, text) annotated
with fully-specified edit operations between the im-
age pairs, to enable further research on this task as
well as downstream image editing tasks.

7 Limitations and Future Work

Our work also has some limitations. Our multi-
modal network does not explicitly attend to the
individual components in the images, such as ob-
jects and scene segments, that can provide addi-
tional context for the edit operations. To this end,
the features learned in the image stream in our
network can be combined with current techniques
for object detection and scene segmentation to im-
prove prediction performance. Further, while we
are constrained to define a finite set of categorical
edits for practical viability, there is scope to ex-
pand the number of edits in our dataset for more
fine-grained learning. Lastly, we note that while a
mathematically optimal set of edit operations may
not exist between source and edited image pairs,
especially given the non-linearity of the edit op-
erations, we can fine-tune our network on more
diverse samples, as well as incorporate negative
samples (mismatched contextual information and
edited images) to keep improving performance.
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Appendix

We discuss additional details related to preparing
the datasets for our work.

A Ethical Considerations and Risks

The GIER dataset is freely accessible to the public.
In the context of this research, we have only in-
ferred additional information from the dataset and
have not made any alterations to the provided data
itself. The data collection process for I-MAD does
not include any personal, private or sensitive infor-
mation, and was deemed exempt from an ethics
review. Also, we used images from the publicly
available COCO dataset following the usage terms
of its public license. For the edit operations and
natural language instructions our editors provided,
they agreed to transfer us the ownership as part of
the hiring process.

While there are no immediate risks associated
with our work, it is essential to emphasize that the
practice of reverse designing in general should be
approached with careful consideration of intellec-
tual property and ethical concerns.

B GIER Dataset

GIER (Shi et al., 2020) contains triplets of (source
image, edited image, natural language request), to-
gether with annotations of the categorical edit oper-
ations performed between the source and the edited
images. However, these edit operations are not fully
specified in that the corresponding parameter val-
ues are not available. Therefore, for the purposes
of this work, we annotate the dataset with the pa-
rameter values corresponding to the edit operations
where feasible and detail our process below.

Contrast. Following the definition of contrast
given in (Shi et al., 2020; Hu et al., 2018), we first
compute the luminance of the source image Is as

Lum (Is) = 0.27Isr + 0.67Isg + 0.06Isb , (11)

where Isr , Isg , Isb correspond to the RGB chan-
nels of Is. We then write the enhanced luminance
(EnLum) as

EnLum (Is) =
1

2
(1− cos (πLum (Is))) . (12)

This allows us to compute the image with the en-
hanced contrast (EnCon) as

EnCon (Is) =
EnLum (Is)

Lum (Is)
Is. (13)

We can define the edited image It as the combi-
nation of the enhanced contrast and the original
image as

It = (1− p) Is + pEnCon (Is) , (14)

which allows us to solve for the contrast control
parameter p.

Sharpness. We solve for sharpness control pa-
rameter p using the equation

It = Is + p∆2Is. (15)

Flip. We checked if the edited image has been
flipped left to right or top to bottom using OpenCV
library (Bradski, 2000).

flip value =





1 if image flipped left to right
2 if image flipped top to bottom
0 otherwise

(16)
We use this to also identify flip actions for the “flip
obj” edit operation in the GIER dataset.

Rotation. For rotation, the parameter is the angle
of rotation from the source to the edited images
w.r.t. an axis perpendicular to the plane of the im-
ages. We estimate this by aligning both the source
and the edited images according to the following
procedure:

1. Use SIFT (Lowe, 2004) to find the key points
and descriptors of both the source and the
edited image.

2. Match the descriptors in both images using the
BFMatcher algorithm (Jakubović and Velagić,
2018).

3. Use the matched points to estimate the homog-
raphy matrix between the two images using
the RANSAC algorithm (Derpanis, 2010).

4. Extract the angle of rotation from the homog-
raphy matrix.

We use this method to identify the angle of rotation
for both “rotate” and “rotate obj” edit operations in
the GIER dataset.

Saturation. We convert the source and the edited
images to the HSV color spaces. We then compute
the mean saturation value of each of the source and
the edited images and compute the saturation factor
p using

S (It) = pS (Is) (17)
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where S (·) refers to the saturation computation
function available in OpenCV (Bradski, 2000).

Brightness and Lightness. For brightness, we
compute the scaling factor p between the intensities
of the source and the edited images as

B (Is) = pB (It) , (18)

where B (·) is the function defined to compute the
intensity of the image available in OpenCV (Brad-
ski, 2000). We also use this method to compute the
parameter values for the “lightness" edit operation
in the GIER dataset, following the fact that both
operations are similarly desgined (Shi et al., 2020).

Hue. We convert the source and the edited im-
ages to the HSV color spaces. We then compute
the mean hue value of each of the source and the
edited images and compute the factor p as

H (It) = pH (Is) , (19)

where H (·) refers to the hue computation function
available in OpenCV (Bradski, 2000).

Tint. To understand variations in the image tint,
we represent both the source and the edited images
in the LAB color space and compute the mean
color of each channel (‘a’ and ‘b’) in the LAB
color space: ‘a’ represents color in the red-to-green
axis, and ‘b’ represents color in the blue-to-yellow
axis. We can then compute the tint factor p as the
ratio of the mean values of the ‘a’ and ‘b’ channels
of the tinted image and the original image in LAB
color space.

C I-MAD: Additional Details

We describe additional details related to our new
dataset.

C.1 I-MAD-Pro: Instructions Provided to
Professional Editors

This is the full instruction sent with the recruitment
email:

We are creating a dataset of adjustment opera-
tions performed on images satisfying creative user
needs. We are conducting the data collection us-
ing Adobe Photoshop, and as a result, only free-
lancers with active Photoshop licenses are eligible
for this project. To collect the dataset, we provide
freelancers with a set of images. We ask them to
provide a one- or two-line comment on what can

be adjusted in the image from their creative per-
spective (for example, "This image is a bit too dark
and has some background clutter"), then perform
the desired edit operations in Photoshop and tab-
ulate them (for example, brightness: +5%, object
removal: between pixels (a, b) and (c, d)), and pro-
vide the edited image. To better organize the data
collection process, we also provide a "universal"
set of around 20 edit operations, so that for each
image, freelancers can start off by thinking of pos-
sible adjustments to the image using edits within
that universal set. Freelancers are, of course, free
to think of adjustments beyond the universal set, in
which case we will add the new edit operations to
the universal set. To summarize the deliverables:
Given a set of source images and a universal set of
around 20 edit operations, please provide, for each
source image,

1. A one- or two-line comment in English on how
to improve the image. This comment need not
specifically mention edit operation names but
only convey a general sense of what can be
improved.

2. The edited image, created using a particular
version of Adobe Photoshop.

3. A tabulated entry of the exact edits performed
(detailed instructions on how to tabulate will
be provided in a readme along with the source
images). We typically expect between 2 and 4
edit operations per image.

C.2 I-MAD-Pro Distribution
We report the edit operations and the corresponding
number of samples in the I-MAD-Pro dataset in
Table 3. To prepare the dataset, we collected all
edit operations performed by all the editors and fil-
tered out the samples that contained edit operations
appearing less than 10 times across all the editors.

C.3 I-MAD-Dense Distribution
For I-MAD-Dense, we maintain a list of 12 edit
operations described in Table 2. For the correspond-
ing text descriptions, we collected 20− 25 ways of
describing each edit operation at a high level in En-
glish. To create the dataset, we randomly selected
30,000 images from the COCO dataset (Lin et al.,
2014). For each image we selected, we chose a
random sequence of 5 unique edit operations out
of those 12, and applied them one after the other.
For every selected edit operation, we also randomly
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Table 2: I-MAD-Dense. We provide the list of categorical
edits in our proposed dataset, together with the corresponding
total number of tuples (source image, target image, text) and
the ranges of the parameter values. For some edit categories,
such as grayscale, HDR, flip, and pre-defined filters such as
sepia, summer and winter, there are no associated parameter
values.

Sl. Edit Operation # Samples Range of Values

1 grayscale 8772 −
2 HDR 8732 −
3 brightness 8722 10− 100
4 summer (instagram filter) 8689 −
5 sepia (instagram filter) 8639 −
6 rotate 8638 90, 180, 270
7 winter (instagram filter) 8615 −
8 flip 8385 −
9 sharpness 8383 10− 100

10 contrast 8094 50− 150
11 gaussian filter 7922 25− 125
12 saturate 6409 5− 30

selected a sentence from its set of text descriptions.
The randomness in the choice of images and edit
operations ensures a wide variety of variations ob-
served due to the different edit operations. How-
ever, the random choice also implies some edited
images may have poor visual quality or not appear
close to how humans would edit. Therefore, we
enforced the following constraints to remove such
images from the dataset.

1. Complex Wavelet Structural Similarity In-
dex Metric (CW-SSIM). This is capable of
handling a wide range of geometric distortions
without compromising its ability to measure
the similarity between the source-edited im-
ages. We use this to ensure that the edited
image is not the same as the source image,
even after when various geometric distortions
are involved in editing.

2. Color Histogram. We compare the color his-
tograms of the source and the edited images to
ensure that the edited image is not an overex-
posed or underexposed version of the source
image.

Our choice of edit operations for I-MAD-
Dense was influenced by two factors:

1. Frequency of edit operations reported by
GIER. The top 5 most frequently used op-
erations are all single-parameter based, taking
up 67%. Overall, single-parameter operations
make up 83% of all operations.

2. For our baseline approach, we wished to con-
sider image edit operations that need single pa-

rameter values (Table 2) to completely specify
them. I-MAD-Pro (Table 3) considers more
complex operations such as object removal,
cropping, flipping objects in the images, noise
addition, and different camera filters.

C.4 I-MAD-Dense Quality Control

We report evaluation metrics to both benchmark the
I-MAD-Dense dataset and show the performance
of TAME-RD.

Per-Class Average Precision We report the per-
class average precision (AP) on both the GIER and
the I-MAD-Dense datasets for all the variations
of our method we experiment with. In the GIER
dataset (Fig. 7), we notice that all the variations per-
form poorly for some of the edit operations, such as
blurring, denoising, rotation, and flip, but perform
well for all other edit operations. We hypothesize
that this may be due to our method overfitting to
the training data because of a combination of two
factors: few training samples for those edit oper-
ations and the structural differences between the
source and the edited images for many of those
edit operations not being sufficient for our method
to learn representative features. We also note that
the ResNet-18 variation of our method generally
performs better than the ResNet-50 variation, indi-
cating that more parameters do not lead to better
performance on the smaller GIER dataset.

By contrast, in I-MAD-Dense, we have sufficient
and diverse samples for all the edit operations, re-
sulting in reasonably high average precisions for all
of them. We also note that the ResNet-50 variation
of our method generally performs better than the
ResNet-18 variation, indicating that more parame-
ters lead to some performance benefits in the larger
dataset I-MAD-Dense.

C.5 Qualitative Results

We also show some qualitative examples where our
method doesn’t perform as expected on GIER and
I-MAD-Dense in Fig 9.

D Additional Experiment Details

We report the full prompt we used for the GPT-4
Predictor (baseline #7 in Sec. 5.2), and report the
results of additional experiments.

D.1 Prompt for GPT-4 Predictor.

The text prompt provided for experiments on all
datasets had the following template: Perform the
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Table 3: I-MAD-Pro Edit Operations. We provide the list of categorical edits in our proposed I-MAD-Pro dataset, together
with the corresponding total number of tuples (source image, target image, text) in the dataset.

Sl. Edit Operation # Samples

1 brightness 752
2 contrast 748
3 crf_dehaze 582
4 crf_temperature 561
5 crf_exposure 515
6 crf_tint 463
7 saturate (w/o colorize) 462
8 crop 278
9 sharpness 255

10 noise_strength 222
11 noise_preserve_details 219
12 hue (w/o colorize) 184
13 noise_reduce_color_noise 141
14 noise_sharpen_details 135
15 vibrance_vibrance 131
16 vibrance_saturate 127
17 camera_filter_shadow 125
18 lightness(w/o colorize) 109
19 shadow_gamma_correction 69
20 vibrance_exposure 66
21 remove_object 65
22 camera_filter_highlights 59
23 bw_R 46
24 bw_Y 46
25 bw_C 45
26 bw_G 44
27 exposure_offset 44
28 bw_B 42
29 bw_M 41
30 radial_filter 35
31 rotate_deg 30
32 bw_saturate (w/o tint) 23
33 color_cyan 20
34 color_yellow 20
35 color_magenta 19
36 saturate(w/ colorize) 17
37 bw_hue (w/o tint) 15
38 bw_saturate (w/ tint) 14
39 hue (w/ colorize) 14
40 bw_hue (w/ tint) 13
41 brush_blur_strength 12
42 lightness(w/ colorize) 12
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Figure 7: Per-class Average Precision on GIER (Shi et al., 2020). We show the average precisions for all variations
of our method. We note poorer performance of all the variations of our method on some of the classes compared to
others. We also note that the ResNet-18 variant with fewer parameters generally performs better than ResNet-50 on
this smaller dataset.

Figure 8: Per-class Average Precision on I-MAD-Dense. We show the average precisions for all variations of our
method. We note the consistent performance of all the variations of our method on all the classes. We also note that
the ResNet-50 variant with more parameters generally performs better than ResNet-18 on this larger dataset.

role of a professional editor for images. You are
given two images and a text description. The first
image is the source image and the second image
is its corresponding edited image. The text de-
scription is a high-level description of underlying
the edit operations between the first and the sec-
ond images.\nThe following is the full set of avail-
able edit operations: <ENTER EDIT OPERATION
NAMES>.\nConsider only these edit operations
and nothing else.\nYour task is to determine the
edit operations along with the exact parameter val-
ues such that applying those edit operations with
those parameter values on the first image trans-
forms it to the second image. Your task is also
to ensure that the edit operations are consistent
with the text descriptions. For example:\ntext de-
scription:\nedit operations:\n<5 EXAMPLES IN
NEW LINES>\nThink step by step to determine the
edit operations and their parameter values from
the given first image, the second image, and the
text description. Ensure that the edit operations
and the corresponding parameter values that you
determine indeed transform the first image to the
second image while being consistent with the text

description. Determine the edit operations and
their parameter values again if you are not abso-
lutely sure. Once you are sure of the edit operations
and their parameter values, provide your response
in the following format:\nedit operations: provide
the comma-separated list of edit operations that
you have determined.\nparameter value: provide
the comma-separated list of parameter values in
the same order as the edit operations.\nRespond
with only these two lists and nothing else.\n\nBelow
is the actual given text description for the given first
and second images.\ntext description:<ACTUAL
TEXT DESCRIPTION>.

For obtaining actual results on the different
datasets, we replace the angular brackets <5 EX-
AMPLES IN NEW LINES> with 5 examples from
the dataset we are testing on, and replace the an-
gular brackets <ACTUAL TEXT DESCRIPTION>
with the actual descriptions accompanying the im-
age pairs in the dataset.
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Source TargetRequest

Transform the 
image into 
shades of gray. 
Make the image 
more detailed.

Ground Truth

Grayscale     1
Sharpness   0.5

Our Predictions

Contrast    0.01

Please remove 
everything but the 
row of band 
members

Color_bg 1
Crop              1
Deform_obj 1

Inpaint_obj 0.19

Can someone 
replace the white 
and black with 
yellow and 
purple? While 
adding in a 
background color 
that suits?

Hue             1.5
Saturation  3.5

Color_bg 0.13

A

B

C

Figure 9: Failure cases. We also show some failure cases of our method. Row A is from our dataset I-MAD-Dense,
and rows B and C are from the GIER dataset (Shi et al., 2020). We note that our method can be different from the
ground truth for cases where there are potential sets of edit operations that are more minimal (such as in row A), or
when edit operations are ambiguous even with the textual context (such as in row C).

Table 4: TAME-RD with different feature fusion strate-
gies. ResNet18 has been trained from scratch for all
cases shown.

Data Method Evaluation Metrics

Acc. ↑ AP ↑ F1 ↑ RMSE ↓ CCC ↑
1

I-MAD-Pro (∼ 1K samples)
Additive Fusion 0.893 0.999 0.999 0.0944 0.785

2 Multiplicative Fusion 0.884 0.999 0.999 0.095 0.787
3 End-to-End Concatenation (Ours) 0.896 0.999 0.999 0.090 0.882

4
GIER (Shi et al., 2020) (∼ 6K samples)

Additive Fusion 0.627 0.667 0.818 4.52 0.386
5 Multiplicative Fusion 0.669 0.701 0.840 4.523 0.384
6 End-to-End Concatenation (Ours) 0.700 0.915 0.949 4.515 0.413

D.2 Additional Ablation Experiments

D.2.1 Fusion Strategy

According to Equation 7, we have opted for an
end-to-end concatenation strategy. Unlike other
available fusing methods, such as component-wise
addition, multiplication, or other forms of cross-
correlation, we do not assume any pairwise cor-
relations in the features between the two streams.
We let the network learn the importance of the in-
dividual feature components through the mapping
using the fully connected (FC) layer. As a result,
the fusion is a generalized combination of the two
streams that encompasses special cases of pairwise
correlations. Concatenation-based fusion is a pop-
ular fusion strategy in the multimodal learning lit-
erature (Wu et al., 2021; Hu and Singh, 2021) be-
cause of its generalizability, which has inspired our
choice. Nevertheless, for the sake of completeness,

we report performance numbers when using addi-
tive and multiplicative fusions in TAME-RD on
the I-MAD-Pro and GIER datasets (Table 4).

D.2.2 Changing λ in Equation 10
λ is a scalar hyper-parameter to control the relative
weightings of the classification and the regression
losses, Lmlcs and Lreg respectively. If λ = 0, then
Lreg has no effect on training. Similarly, if λ → ∞,
then Lmlcls has a negligible effect on training (we
note that some influence of Lmlcls always remains
in the training by design, as the parameter value
depends on the edit categories). In our case, we
consider the classification and regression losses to
be equally important in training and hence choose
λ = 1. Experimentally, this also turns out to be
the optimal balance between the two loss terms to
achieve the best model performance. To highlight
this, we report our observations for different met-
rics for λ = 0.5 (classification weighed twice as
much as regression) and λ = 2 (regression weighed
twice as much as classification) in Table 5

D.3 Additional Results.

We performed further experimental analysis on per-
forming channel-wise concatenation of Is and It
as an alternative to computing δI (Eqn. 4). The
results show an accuracy of 57%, RMSE of 0.332,
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Table 5: TAME-RD with different λ. ResNet18 has
been trained from scratch for all cases shown.

Data Method Evaluation Metrics

Acc. ↑ AP ↑ F1 ↑ RMSE ↓ CCC ↑
1

I-MAD-Pro (∼ 1K samples)
λ = 0.5 0.896 0.999 0.999 0.0919 0.884

2 λ = 2 0.867 0.563 0.984 0.0932 0.881
3 λ = 1 (Ours) 0.896 0.999 0.999 0.090 0.882

4
GIER (Shi et al., 2020) (∼ 6K samples)

λ = 0.5 0.717 0.909 0.841 4.52 0.42
5 λ = 2 0.715 0.907 0.844 4.513 0.416
6 λ = 1 (Ours) 0.700 0.915 0.949 4.515 0.413

and CCC of 0.266. This indicates a drop in per-
formance compared to learning features based
on pixel-wise discrepancies. We also investigate
whether, given the source image Is and the text
c, the edited image It is actually beneficial for
predicting edit operations together with parame-
ter values. The corresponding experiment yields
an accuracy of 55%, RMSE of 0.343, and CCC
of 0.197. These results establish that reverse de-
signing is most effectively solved when both the
source and the edited images are available. This
also mirrors how humans cannot precisely deduce
edit operations and parameters without observing
the final edited image.
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