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Abstract
We introduce DocTime - a novel temporal
dependency graph (TDG) parser that takes as
input a text document and produces a tempo-
ral dependency graph. It outperforms previous
BERT based solutions by a relative 4-8% on
three datasets from modeling the problem as
a graph-network with path-prediction loss to
incorporate longer range dependencies. This
work also demonstrates how the TDG graph
can be used to improve the downstream tasks
of temporal questions answering and NLI by a
relative 4-10% with a new framework that in-
corporates the temporal dependency graph into
the self-attention layer of Transformer models
(Time-transformer). Finally, we develop
and evaluate on a new temporal dependency
graph dataset for the domain of contractual
documents, which has not been previously ex-
plored in this setting.

1 Introduction

Understanding the temporal relations between
events mentioned in a document is an important nat-
ural language task with applications in downstream
tasks such as timeline creation (Leeuwenberg and
Moens, 2018), time-aware summarization (Noh
et al., 2020), temporal question-answering (Ning
et al., 2020a), and temporal information extraction
(Leeuwenberg and Moens, 2019). This area of re-
search remains important yet challenging due to
several limitations such as confounded modalities
(eg. events that are certain to happen vs the ones
that might happen), event ambiguity (eg. agreeing
to terms of a contract vs signing a contract) and
need for complete annotation of all event pairs for
precise temporal localization (Yao et al., 2020a).

Early work densely annotated all pairs of events
to address this problem (Cassidy et al., 2014), but
was limited to short passages or adjacent sentences
due to the

(
n
2

)
complexity of the task, especially

for long documents. Recently this problem formu-
lation was significantly simplified using temporal

dependency trees (TDT) (Zhang and Xue, 2019)
and temporal dependency graphs (TDG) (Yao et al.,
2020a) by only capturing the reference TIMEX or
event to build a dependency graph to capture this
information. This enabled the development of tem-
poral dependency parsers (Zhang and Xue, 2018a;
Ross et al., 2020a) to infer temporal relationships
more robustly and efficiently.

We introduce DocTime - a state-of-the-art tem-
poral dependency parser that parses document-level
text to produce temporal dependency graphs. Un-
like previous approaches using contextual features
such as BERT(Ross et al., 2020b), our model uti-
lizes a graph network and a novel path prediction
loss to reason over long-range multi-hop depen-
dencies while maintaining global consistency of
temporal ordering of inter-dependent events.

To validate the utility of DocTime and our
generated temporal dependency graph, we go
one step further than prior work and explore the
question of whether temporal dependency graphs
are useful for downstream tasks by introducing
Time-Transformer. It is a framework to incor-
porate temporal dependency graphs into existing
transformer-based architectures without retraining
from scratch. We demonstrate the usefulness of
our proposed Time-Transformer on temporal
NLI (Vashishtha et al., 2020) and time-sensitive
question answering (Chen et al., 2021) tasks.

Prior work on temporal relationship extraction
and temporal dependency parsing have been mostly
limited to news (Zhang and Xue, 2019; Yao et al.,
2020a; Pustejovsky et al., 2003a), narrative stories
(Zhang and Xue, 2018b; Kolomiyets et al., 2012)
or clinical notes (Bethard et al., 2016). In addi-
tion to experimenting with existing temporal de-
pendency parsing datasets, we introduce a dataset
for temporal dependency graphs in a new domain
- contractual documents, where temporal reason-
ing over events has real world legal and monetary
implications for users.
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Figure 1: DocTime encodes rich token level embeddings from input document using structural, syntactic, and semantic graphs
through BERT-GCN, WR-GCN and HyperGraph Conv layers, respectively. Token-level features are concatenated and passed
through Iterative Deep Graph Learning (IDGL) to learn a noisy dependency structure over the TIMEX and Event entities. Graph
U-net allows the model to incorporate longer range dependencies for predicting the final temporal dependency graph structure
and relationships. The model is trained with a novel auxiliary path prediction loss to learn multi-hop connections in TDG.

Our main contributions include:
• A novel document-level temporal dependency

parser (DocTime) that predicts the tempo-
ral dependency graph from text in an end-to-
end manner with a novel path prediction loss,
which outperforms the current SOTA by a rel-
ative 4-8% on three datasets.

• Time-Transformer, a novel framework
to incorporate Temporal Dependency Graphs
into transformer models for downstream tasks
without needing to retrain from scratch. Re-
sults on natural language inference and ques-
tion answering with a new self-attention mod-
ule show a relative 4%-10% improvement.

• Development of new document-level (>1500
words) TDG dataset in the domain of contrac-
tual documents (ContractTDG1).

2 Related Work

Temporal Dependency Parsing: Previous work
has been devoted to pairwise classification of rela-
tions between events and time expressions, notably
TimeBank (Pustejovsky et al., 2003b) and its exten-
sions like Cassidy et al. (2014) annotated all rela-
tions. Pair-wise annotation have multiple problems
including polynomial square complexity, global in-
consistencies in predictions due to relation transitiv-
ity and forced annotation of vague relations (Ning
et al., 2018). Prior work focuses on extracting tem-
poral relations between event pairs in the same
sentence or adjacent sentences (Goyal and Durrett,
2019; Ning et al., 2019a; Han et al., 2019a,c,b,
2020; Ballesteros et al., 2020; Zhao et al., 2020).
TIMERS Mathur et al. (2021a) presented temporal
relation extraction in long document.
Temporal Dependency Parsing (TDP): Tem-

1https://github.com/contractTDG/
ContractTDG_Dataset

poral dependency trees were first proposed by
Kolomiyets et al. (2012). (Zhang and Xue, 2018b)
provided the the earliest TDT corpus on news data
and narrative stories, (Zhang and Xue, 2019) re-
leased the first English TDT corpus. Yao et al.
(2020a) relaxed the assumption of single reference
edge in dependency trees to form the improved
TDG. (Zhang and Xue, 2018a) built an end-to-end
neural temporal dependency parser using BiLSTM
and Ross et al. (2020b) improved it further incorpo-
rating BERT. Our approach improves by modeling
complex dependencies and introduces a new re-
source for TDG in contracts.
Linguistically-aware Transformers: Recent
works have investigated using linguistic features
as a prior for Transformer models. Syntax-bert
(Bai et al., 2021a) uses syntactic and constituency
dependency on NLI and GLUE benchmarks. Coref-
BERT Coreference-Informed Transformer (Liu
et al., 2021) performs coreference-aware dialogue
summarization. Temporal reasoning about event or-
dering can find applications in many tasks such as
summarization (Noh et al., 2020), question answer-
ing (Chen et al., 2021; Ning et al., 2020b; Jin et al.,
2020), commonsense reasoning (Qin et al., 2021),
and natural language inference (Vashishtha et al.,
2020). We propose to use TDG as priors to Trans-
former models to make them temporally-aware for
use in downstream tasks.

3 DocTime: Document TDG Parsing

Task Formulation: Let document D be defined as
a sequence of n tokens [x1, · · · , xn]. The entire
document can be seen as sequence of m sentences
[s1, · · · , sm]. Each document has a set of p events
E = [e1, · · · , ep] and q timexes T = [t1, · · · , tq],
where p, q ≤ n. The creation date of the doc-
ument is represented by timestamp tDCT. Yao
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et al. (2020a) defines a temporal dependency graph
(TDG) where each timex node always has a ref-
erence timex, which is the most specific narrative
time related to the event (Pustejovsky and Stubbs,
2011). If such a narrative time is not available,
the timex should be anchored to the DCT. An
event node can either have a reference timex or
be connected to a reference event, which is an
event that provides the most specific temporal lo-
cation. The task of temporal dependency graph
parsing of a text document D results in a depen-
dency graph G = (C, V ), where C represents the
set of all events, timexes and the document cre-
ation date (DCT). V is the set of all edges in the
graph, where each edge represents a temporal rela-
tionship ℜ between corresponding entity node pair
V = {(ti, tj), (ei, ej), (ei, tj)}∀i, j ∈ C.
Model Overview: Figure 1 shows an overview of
our network architecture for temporal dependency
parsing. We first extract token level BERT features
from the input document, which are then enriched
by three graph networks that encode structural, syn-
tactic, and semantic relationships. This is followed
by Iterative Deep Graph Learning over the TIMEX
and Event entities to learn an initial dependency
structure. This is passed through a Graph U-net to
allow the model to incorporate longer range depen-
dencies before predicting the final temporal depen-
dency graph and relationships. The model is also
trained with a novel auxiliary path prediction loss.

3.1 Feature Encoding

We leverage the pre-trained BERT language model
to obtain the embeddings for each token as fol-
lows: w1, w2, · · · , wn = BERT([x1, x2, · · · , xn]),
where wi is the embedding of the token xi. As
document sequence lengths can be larger than 512,
we use a sliding window encoding technique to
encode whole documents. We average the embed-
dings of overlapping tokens of different windows
to obtain the final representations. These token rep-
resentations are enriched with slightly enhanced
variants of the structural (Gstr), syntactic (Gsyn)
and semantic (Gsem) graphs utilized by (Mathur
et al., 2021b) for document-level temporal relation-
ship extraction. The key differences are the use of
BERT-GCN (Lin et al., 2021) to combine contex-
tual and structural graph features, the addition of
co-reference relationships to the syntactic graph,
and the use of a hypergraph convolution (Bai et al.,
2021b) to allow for token level features in the se-

mantic graph . All aspects of these features and the
changes are presented in Appendix B.

3.2 Temporal Dependency Prediction

We combine the learned representation for each en-
tity node (timex, event, DCT) by concatenating the
node embeddings learned from structural, syntacti-
cal and semantic graphs to obtain a D-dimensional
feature vector for each of z entities in the document
given by F(wi) = gstri ⊕gsyni ⊕gsemi , where ⊕ rep-
resents concatenation. We retain only the enriched
node embeddings for each word. We then utilize It-
erative Deep Graph Learning (IDGL)2 (Chen et al.,
2020) to dynamically learn an initial dependency
graph structure from the combined node embed-
dings. Given a noisy graph input feature matrix
F ∈ Rl∗D, IDGL produces an implicitly learned
graph structure G∗ = {A∗,F,𭟋l} with a jointly
refined corresponding graph node embeddings F′

with adjacency matrix A∗ by optimizing with re-
spect to downstream link prediction task 𭟋l be-
tween entity nodes.

3.2.1 Graph U-net For Higher Level Features
The Graph U-net (Gao and Ji, 2019) is a U-shaped
graph encoder-decoder architecture containing two
down-sampling graph pooling (gPool) layers and
two up-sampling graph unpooling (gUnpool) lay-
ers with skip connections. gPool layers reduce the
size of the graph to encode higher-order features,
while the gUnpool layer restores the graph into its
higher resolution structure, thereby promoting in-
formation exchange between entity pairs through
an enlarged receptive field. Each graph pooling and
unpooling layer is followed by a GCN layer to im-
plicitly capture the topological information in the
input graph. Taking the dynamically learned graph
structure G∗, a graph embedding layer converts
input node features F’ into low-dimensional rep-
resentations that are then passed through a graph
U-net encoder-decoder ℧ to acquire entity-level
relation matrix Y = ℧(F’), Y ∈ Rl∗l∗D′

.

3.2.2 Temporal Dependency Link Prediction
and Relation Classification

Given entity adjacency matrix A∗ and entity-level
relation matrix Y, we use a bilinear function to
map them to link and relation probabilities Zl

and Zr, respectively. Formally, we have Zl =
σ(YWlY+ bl) and Zr = σ(A∗WrA

∗+ br), where

2Implementation: https://github.com/
graph4ai/graph4nlp

995



0 4 0 0 1 0
0 3 2 0 1 0
2 10 0 0 0
1 0 0 0 0 0
1 0 1 2 0 1
0 0 0 0 0 1

TISA

w1 w2 w3 wn

x1 x2 x3 xnInput Tokens

Embedding
DocTime

Temporal
Dependency Graph 

Scale

SoftMax

MatMul

Element-wise  
Dot Product

MatMulHyperbolic
FeedForward

k = 2
k = 3

k = K

Temporally-informed 
Self Attention 

k-hop feature map 

Q K V

Q K V

k = 1

k-hop  
feature map 

Downstream tasks 
Temporal NLI / Question Answering 

Figure 2: Time-Transformer is a variant of pre-trained Transformer models that augments temporal knowledge into the
self-attention layer during fine-tuning of the Transformer model on different downstream tasks. Input text is converted into a
temporal dependency graph using DocTime parser. The graph is then converted into a set of masks that encodes the temporal
relationship between each token (i.e. After, Before) using the novel Temporally- informed Self-Attention (TISA). TISA creates
K masks to represent the (k)-hop distance between two nodes in TDG for aggregating information across longer ranges in the
input. TISA uses hyperbolic feed-forward layer to learn the mask weights.

Wl,Wr, bl, br ∈ RD′∗D′
represent learnable pa-

rameters. This is followed by a Softmax layer for
link prediction and relations classification.

3.3 Training DocTime

Path Reconstruction Loss: In a document-level
temporal parsing setup, the majority of node pairs
may not have any ground truth link or temporal
relation. Graph representation learning methods
universally model relations between all entity pairs
regardless of whether the entity pair has any rela-
tionship, leading to dispersion of attention in learn-
ing most non-existent edge connections. We pro-
pose path reconstruction loss Lpath, which forces
the model to pay more attention to learn entity pairs
with relationships rather than ones without relation-
ships. Equation 1 gives the cross entropy loss over
all direct edge connection between all pairs of en-
tities, where rij indicates the relation between the
entity pair and P (rij) is probability of relation label
r. Path reconstruction loss Lpath modifies the cross
entropy loss Lce function as shown in Equation 2
by sampling all n2 entity pairs and maximizing the
probability of the shortest dependency path N (ϕ)
between the entity pair nodes. Finally, the path re-
construction loss and the existing classification loss
are added as the training objective for DocTime,
given by L = Lpath + Lce.

Lce = − 1
∑l

i=0Ni

l∑

i=1

Ni∑

j=1

{rij logP (rij)

+ (1− rij) log(1− P (rij))} (1)

Lpath = − 1
∑l

i=0Ni

l∑

i=1

Ni∑

j=1

{rij logN (ϕi)

+ (1− rij) log(1− N (ϕi))} (2)

Multi-task Training: Dependency link prediction
and entity-level relation classification are corre-
lated tasks and reinforce each other. We use multi-
task training to optimize both tasks simultaneously
using the path prediction cross entropy loss. The fi-
nal optimization uses a weighted sum of the depen-
dency link prediction loss and entity-level relation
classification loss L = λLl+(1−λ)Lr, where the
weighting factor λ is a hyperparameter.

4 Time-Transformer

We would also like to understand our temporal de-
pendency parsing can be useful for downstream
tasks requiring temporal reasoning. Here we intro-
duce the Time-Transformer, which allow a TDG
generated by DocTime to be combined with state-
of-the-art transformer models for temporal tasks.
The Time-Transformer augments the flow of infor-
mation in a Transformer network via a temporally-
informed self-attention mechanism. We first for-
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mulate the Time-Transformer architecture in §4
and then construct of temporally-informed atten-
tion layers in §4.

Architecture: Time-Transformer was motivated
by recent work incorporating syntax (Bai et al.,
2021a) or co-reference graphs(Liu et al., 2021)
into the transformer architecture to improve down-
stream tasks. In each case, these approaches
encode additional knowledge from the sparse
graphs as a masked self attention layer into the
transformer. Figure 2 shows the architecture of
Time-Transformer incorporating temporal knowl-
edge into the self-attention layer during fine-
tuning of the Transformer model. Input text is
converted into a temporal dependency graph us-
ing DocTime parser. The graph is then con-
verted into a set of masks that encodes the tem-
poral relationship between each entity (i.e. Af-
ter) explained in more detail in the next sec-
tion: Temporally-informed Self-Attention. The in-
put embedding (token+positional+attention masks)
is passed through the Time-Transformer model
which modifies the self-attention layer of the stan-
dard Transformer architecture with a temporally-
informed self-attention layer to be fine-tuned on
downstream tasks.

TISA: Temporally-informed Self-Attention :
The TDG produced by DocTime is sparse and
to effectively utilize the graph extracted by the tem-
poral dependency parser for longer range temporal
relationships, we utilize K self-attention layers that
encode the temporal relationship if traversing K
hops in the TDG as shown in 2. More formally
starting from node A, the minimum number of
hops (k) required to reach another node B can
be regarded as k-hop distance between A and B,
written as k-hop(A,B). We create K masks to
represent the (k)-hop distance between two nodes
to allow the model to aggregate information across
longer ranges in the TDG. Specifically, a mask
M ∈ {0, 1, 2, · · · , r}n×n denotes if there is a re-
lation between entity i and j, and n is the number
of tokens in the input text. The value of the mask
is the relationship type for i and j. It is found by
inferring the relationship using Allen’s interval al-
gebra (Allen, 1983) and is set to 0 if there is no
relationship or set to "Overlap" if there is a conflict.
We adopt a soft-mask learning strategy to enable
the self-attention layer to re-weight the importance
of each mask and avoid the problem of vanishing
gradient. A hyperbolic feed-forward layer is used

to learn the mask weights as research has shown it
can avoid distortion of the feature space in graph
representations (Ganea et al., 2018). The value
of K is a hyperparameter that can be customized
according to the nature of input dependency graph.
Training Time-Transformer: For each
dataset, we optimize the hyper-parameters of
Time-Transformer through grid search on the
validation data. In all our experiments, we limit the
maximum value of k-hop to 15. Detailed settings
can be found in the appendix.

5 Experiment

5.1 Temporal Graph Parsing Datasets

We train and evaluate DocTime on three datasets.
First is the Temporal Dependency Graphs (TDG)
dataset (Yao et al., 2020a) made up of 500
Wikinews articles annotated with document-level
temporal dependency graphs. Second is the Tem-
poral Dependency Trees (TDT) dataset Zhang
and Xue (2019) made from 183 documents derived
from TimeBank (Pustejovsky et al., 2003a) anno-
tated with a temporal dependency tree structure.
The third dataset we created as part of this paper
and is describe in more detail below.
Contract-TDG: Understanding the temporal rela-
tionship of events in contracts is an important busi-
ness problem, where understanding event timelines
can have legal and monetary consequences. Pre-
vious work on temporal relationships has largely
focused on clinical, news or narrative text , whereas
to the best of our knowledge the contractual do-
main has not been explored for this problem. To
construct this dataset, we used 100 contracts from
the Atticus contracts dataset3 (Hendrycks et al.,
2021), which were sourced from public domain
SEC contracts. Due to the multi-page length of
these documents, we limited the annotations to the
first 1500 words. We did not include definition
sections, since they did not contain many events
of interest for this task. The documents have a
70-10-20 split for training, validation, and testing.

To obtain the TDG annotations required for our
task, we followed the 5 steps procedure outlined
by the original TDG dataset in (Yao et al., 2020b):
(i) TIMEX Identification (TE), (ii) Identifying ref-
erence times for TE, (iii) Event identification, (iv)
Identifying reference times for events, (v) Identify-
ing reference events for events. Document Creation

3https://www.atticusprojectai.org/cuad
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Figure 3: Example of a temporal dependency graph from ContractTDG dataset annotated using Brat Tool.

Dataset Docs Timex Events Rels
TimeBank (Pustejovsky et al., 2003b) 183 1,414 7,935 6,148
TB-Dense (Cassidy et al., 2014) 36 289 1,729 12,715
MATRES (Ning et al., 2019b) 275 - 1,790 13,577
TDT-Crd (Zhang and Xue, 2019) 183 1,414 2,691 4,105
TDG (Yao et al., 2020a) 500 2,485 14,974 28,350
Contract-TDG) (Ours) 100 2354 11,752 12,909

Table 1: Comparison of ContractTDG data statistics to other
temporal relation datasets. ContractTDG has fewer documents
but comparable number of TIMEX/Events/relations.

Task TDG Contract TDG
(F1) (F1)

1: TIMEX ID 0.96 0.93
2: TIMEX RT 0.89 0.81
3: Event ID 0.79 0.76
4: RT ID (U) 0.67 0.83
4: RT ID (L) 0.61 0.75
5: RE ID (U) 0.59 0.85
5: RE ID (L) 0.52 0.79

Table 2: Inter-Annotator Agreement (IAA) for the Contract-
TDG and TDG dataset. U = structure, L = structure + labels

Times (DCT) were provided as effective dates in
the ATTICUS corpus.

Similar to (Yao et al., 2020b) for tasks 1 (TE)
and 3 (Event ID), we used the Mechanical Turk
platform to obtain two annotations to validate text
spans of noisy TIMEXes extracted by HeidelTime
software4 (Strötgen and Gertz, 2013) and verbs that
were possible events. Disagreements were resolved
by an expert annotator. However, for the reference
tasks, we decided against using Mechanical Turk
due to the difficulty and length of the contracts as
well as the lower agreement faced by the original
TDG system for the last two tasks. We instead
used the BRAT annotation tool5 (Stenetorp et al.,
2012) with an expert annotator for tasks 2,4, and 5,
following the (Yao et al., 2020b) guidelines . Con-
tractTDG is annotated for four temporal relations -
after, before, overlaps, and includes.

Table 1 compares the data statistics of the Con-
tractTDG to previous temporal relationship and

4https://github.com/HeidelTime/heideltime
5https://brat.nlplab.org/

temporal dependency corpora. Even though this
dataset has many fewer documents than the TDG
dataset, it has a large number of TIMEX, Events,
and Temporal relationships due to the document
length. Table 2 reports the F1 IAA metrics for Con-
tractTDG dataset to directly compare to the original
TDG dataset. For Tasks 1 and 3 we report IAA F1
for the two crowd sourced worker annotations and
for the relationship tagging tasks (2,4,5), we report
IAA metrics calculated on the test postion (20% of
the data) that was reviewed by two experts. The
agreement is slightly lower for the TIMEX/Event
identification tasks but higher for the three relation-
ship tasks. We evaluate DocTime for dependency
structure as well as structure+relation prediction
for both development and test splits.

5.2 Time-Transformer Experiments for
Downstream Tasks

We adopt Time-Transformer on BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019a), Big-
Bird (Zaheer et al., 2020a) and FiD (Izacard and
Grave, 2021) for evaluation on two downstream
tasks in §6.2. We utilized the official checkpoint
for each pre-trained language model as provided
by respective authors. First, we test Time-BERT
and Time-RoBERTa on Temporal NLI dataset,
which consists of 5 sub-datasets (Vashishtha et al.,
2020) to study the effect of temporal reasoning
for predicting event ordering and duration. Sec-
ond, we run experiments on the TimeQA dataset
(Chen et al., 2021) to evaluate the performance
of Time-BigBird and Time-FiD for the long-
document question-answering task. We report Ex-
act Match (EM) and F1 scores as evaluation metrics
on dev and test sets of easy and hard versions.
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System
TD-Trees TD-Graphs ContractTDG

Structure-only Structure+Relation Structure-only Structure+Relation Structure-only Structure+Relation
Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test

B
as

el
in

es Majority Baseline 0.43 0.42 0.15 0.18 0.62 0.68 0.41 0.51 0.36 0.35 0.36 0.33
Logistic Regression Baseline (Zhang and Xue, 2018a) 0.64 0.70 0.26 0.29 0.62 0.69 0.49 0.58 0.42 0.39 0.45 0.38
Neural Ranking Parser (BiLSTM) (Zhang and Xue, 2018a) 0.75 0.79 0.53 0.60 0.69 0.79 0.55 0.66 0.49 0.46 0.52 0.48
BERT Ranking Parser (Ross et al., 2020b) 0.77 0.83 0.59 0.68 0.71 0.80 0.62 0.71 0.67 0.65 0.62 0.61

A
bl

at
io

n

DocTime (ours) 0.85* 0.86* 0.66* 0.72* 0.74* 0.85* 0.69* 0.77* 0.70* 0.69* 0.68* 0.64*
DocTime w\o Graph U-net 0.83 0.84 0.63 0.70 0.71 0.82 0.67 0.75 0.68 0.63 0.66 0.62
DocTime w\o Structure Graph 0.81 0.80 0.62 0.65 0.67 0.72 0.65 0.73 0.67 0.63 0.64 0.60
DocTime w\o Syntactic Graph 0.80 0.82 0.62 0.66 0.65 0.73 0.62 0.69 0.64 0.61 0.62 0.59
DocTime w\o Semantic Graph 0.76 0.78 0.55 0.65 0.62 0.70 0.60 0.67 0.59 0.57 0.59 0.57
DocTime w\ Graph Prediction 0.72 0.64 0.49 0.55 0.57 0.65 0.57 0.58 0.59 0.53 0.55 0.54
DocTime w\ Pairwise Link Prediction 0.82 0.83 0.63 0.69 0.72 0.83 0.66 0.73 0.65 0.60 0.62 0.60
DocTime w\ Path Prediction Loss 0.85 0.86 0.66 0.72 0.74 0.85 0.69 0.77 0.70 0.69 0.68 0.64

Table 3: Results comparing performance of DocTime with baselines and ablative components on TDT, TDG, ContractTDG
datasets. We majority and logistic regression baselines from (Zhang and Xue, 2018a). * indicates statistical significance over
BERT Ranking Parser (Ross et al., 2020b) (p ≤ 0.005) under Wilcoxon’s Signed Rank test. Darker green represents better F1
performance on ablation studies. Bold denotes the best performing model. DocTime improves substantially over all datasets for
both dependency structure and structure+relation prediction tasks. The ablation shows that semantic graph features prove to be
most beneficial. Our proposed path prediction loss is critical for state-of-the-art performance of DocTime model.

6 Results and Analysis

6.1 Temporal Graph Parsing

Performance of DocTime w.r.t. baselines: Table
3 compares the performance of DocTime against
other baseline methods on TDT, TDG and Con-
tractTDG. We also provide a majority baseline Con-
tractTDG to evaluate whether the methods work
better than a random label assignment as imple-
mented in (Yao et al., 2020a). We also include
the two current SOTA approaches for temporal de-
pendency parsing: The BiLSTM attention-based
Neural Ranking Parser proposed by (Zhang and
Xue, 2018a) 6 and the BERT Ranking Parser (Ross
et al., 2020b) on each dataset . We also report
results for a logistic regression baseline proposed
by (Zhang and Xue, 2018a). Results in Table 3
show that DocTime outperforms both Neural and
BERT Ranking Parser by a significant margin on
the TDT (2-4%) TDG (5-6%) and ContractTDG
(3-4%) datasets. We believe its primarily because
they formulate temporal dependency parsing as a
ranking task designed to select the best reference
event/timex for each node. However, TDG pars-
ing requires the model to be able to reason over
multiple dependencies originating from each node
while maintaining global consistency of temporal
ordering of inter-dependent events. We perform
experiments for dependency structure prediction
and structure+relation prediction and find that pre-
dicting labeled dependency edges is a much more
challenging task across all datasets. DocTime
achieves state-of-the-art performance on all three
datasets (see bold), and shows that it can success-
fully handle document-level long-range dependen-
cies in the challenging ContractTDG dataset from

6Used: http://github.com/yuchenz/tdp_ranking

Model UDS-duration UDS-order TempEval3 TimeBank-Dense RED
Majority 50.00 54.52 54.57 50.54 52.51
NBOW (Iyyer et al., 2015) 82.54 54.52 54.57 50.54 52.51
Infersent (Conneau et al., 2017) 92.65 73.22 62.20 68.29 63.47
RoBERTa (Liu et al., 2019b) 94.51 80.17 54.57 94.60 80.59
Time-RoBERTa (E) 95.78 82.03 60.66 95.45 82.10
Time-BERT 96.01 82.97 61.32 96.08 82.15
Time-RoBERTa 96.67 82.98 62.50 96.33 82.50

Table 4: Accuracy comparison on the Temporal NLI dataset
test set. Time-RoBERTa fine-tuned by utlizing temporal
dependencies extract from DocTime model pre-trained on
TDG dataset outperform all baselines provided by (Vashishtha
et al., 2020)(see bold).

the 6-12% relative improvement over the BERT
based ranking parser. A more detailed analysis of
performance per temporal relationship type can be
found in the Appendix, where largest gains are seen
for event-event pairs.

Ablation Study of DocTime: To assess the con-
tribution of structure and syntactic and semantic
graph features, we performed ablation experiments
as reported in Table 3 highlighted in red . We also
analyzed the effect of different types of training
loss. We observe that removing the semantic graph
consistently degrades performance, indicating the
need for hypergraph learning over temporal argu-
ments and RST features to capture document-level
discourse relations. We see that removing structure
graph reduced the performance to below the BERT
Ranking Parser, as DocTime leverages BERT’s
contextual learning through a structural graph. Syn-
tactic graph adds incremental value to DocTime
due to its relational learning of syntactic depen-
dencies within each sentence through relational
GCN. We evaluated the model performance in case
all edges of the TDG are used for one forward
pass and call it ”Graph Prediction”. Training the
model by evaluating a single edge in one pass (sim-
ilar to temporal relation prediction in (Pustejovsky
et al., 2003b) is referred to as ”Pairwise Predic-
tion". We explore the impact of different training
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Model Easy-mode Hard-mode
Dev Test Dev Test

EM F1 EM F1 EM F1 EM F1
FT on TimeQA

BigBird (Zaheer et al., 2020b) 16.4 27.5 16.3 27.1 11.4 20.6 11.9 20.3
Time-BigBird (E) 15.5 25.0 14.1 25.5 9.6 15.6 9.3 18.5
Time-BigBird 18.9 29.5 18.9 29.5 13.0 22.5 13.0 22.8
FiD (Izacard and Grave, 2020) 15.9 27.1 15.7 28.0 10.7 19.1 10.3 19.7
Time-FiD (E) 13.8 25.2 12.1 25.6 8.9 17.3 8.8 17.6
Time-FiD 17.5 29.3 18.1 30.3 12.5 22.2 12.5 21.5

FT on TriviaQA
BigBird (Zaheer et al., 2020b) 33.4 42.5 33.7 43.0 27.7 35.9 27.7 36.2
Time-BigBird (E) 31.3 40.4 32.3 41.8 25.9 33.6 25.8 35.5
Time-BigBird 35.0 44.8 35.1 45.5 29.2 36.6 29.2 38.0

FT on NQ + TimeQA
FiD (Izacard and Grave, 2020) 59.5 66.9 60.5 67.9 45.3 54.3 46.8 54.6
Temp-FiD (E) 57.9 65.6 58.5 65.2 41.1 52.6 44.5 52.8
Time-FiD 61.3 68.2 62.4 69.6 46.7 56.2 48.2 56.4

Table 5: Results comparing F1 score and exact match (EM)
performance of Time-BigBird and Time-FiD for QA
task on easy and hard sections of TimeQA dataset. We
evaluate the Transformer models in 3 settings - fine-tune
on TimeQA; fine-tune TriviaQA; and fine-tune on NQ then
TimeQA. Green shows improvement due to our proposed
Time-Transformer model, while we see degradation due
to Euclidean variant of Time-Transformer (E)

losses for the proposed model (Table 3, highlighted
in green ). Learning DocTime by propagating
losses over the entire document graph severely de-
teriorates model performance as the model has very
limited training documents samples (182 for TDT,
400 for TDG, 80 for ContractTDG). Our proposed
path prediction loss shows superior performance
over pairwise link prediction as it jointly learns the
relation label between a pair of nodes as well as the
shortest dependency path linking them. As a result,
the model can recover from structure prediction er-
rors between nodes by learning an alternative path
reconstructed through multi-hop connections.

6.2 Application of Temporal Dependency
Parsing for downstream tasks

We train the DocTime model on the TDG corpus,
which can be used to infer a temporal dependency
graph from raw text samples. We extract events
and timexes using CAEVO (Chambers et al., 2014)
for all data samples in train,validate, and test. The
temporal dependency graph acquired for each docu-
ment is used as a prior for Time-Transformer
to perform downstream tasks.
Performance of Time-Transformer on Tem-
poral NLI: The temporal NLI task requires a
model to identify the semantic relationship (en-
tailed, not-entailed) between the context and cor-
responding hypothesis sentence based on tem-
poral information from text. The temporal de-
pendency graphs extracted using the DocTime
trained on the TDG corpus are used as prior for
Time-BERT for entailment classification. Table 4
shows the test accuracies of Time-BERT-large,
Time-RoBERTa-large and other competi-

tive baselines [(Iyyer et al., 2015),(Conneau
et al., 2017)] reported by (Vashishtha et al.,
2020). The temporal information prior proposed
in Time-Transformer helps the BERT and
RoBERTa models perform much better on the NLI
task. The accuracy improved by 1.5-2.3 F1 points
by applying our framework on the RoBERTa model
across the five subsets. We observe the perfor-
mance gain in the case of the Euclidean version of
Time-RoBERTa to be modest as compared to its
hyperbolic counterpart.

Performance of Time-Transformer on
TimeQA: The TimeQA task focuses on under-
standing the time scope of facts in the long text
followed by answering questions conditioned
on the query and the document using implicit
temporal information. We then apply the DocTime
model output trained on the TDG corpus to the
Time-Transformer framework on BigBird
and FiD language models for long document
question answering task. Following (Chen et al.,
2021), we experiment with three variants of
pre-trained settings: (1) fine-tuned on the TimeQA
training set; (2) fine-tuned on NQ/TriviaQA data
(3) fine-tuned on NQ/TriviaQA data and TimeQA.

Table 5 shows the effectiveness of
Time-BigBird and Time-FiD in consis-
tently outperforming their corresponding baselines
in all three settings. More specifically, we see a re-
altive gain of 10-14% in F1 and exact match scores
(EM) for both easy and hard sections of the dataset.
It is impressive to note that the improvements due
to the Time-BigBird and Time-FiD models
are steady with different pre-training setups with
the addition of only a few extra parameters to the
baseline model. An important observation here is
that the Euclidean versions of Time-BigBird
and Time-FiD show persistent performance
deterioration across all settings for TimeQA. We
attribute this phenomenon to our initial hypothesis
behind using hyperbolic operations in the proposed
Temporally-informed self attention (TISA) layer.
As the text length grows, the complexity of
geometric operations increases, leading to vectorial
distortions in Euclidean spaces (Ganea et al., 2018).
This is remedied by hyperbolic transformations
of masked self-attention learning in the proposed
Time-Transformer.

Our experiments provide evidence that tempo-
ral dependency graphs extracted using DocTime
and then utilized as a prior by temporally-
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Figure 4: Impact analysis of long-distance dependencies
on Transformer models for TimeQA task. Plot shows the
exact match (EM) accuracy vs length of input document
for hard samples. We use BigBird and FiD fine-tuned on
NQ + TimeQA as backbone models. Time-BigBird and
Time-FiD maintain steady improvement over baseline mod-
els even with increase in input lengths.

Corpus Model Structure + Relation (F1)
te,te e,te e,e full

TD-Graphs
Heuristic 0.82 0.58 0.34 0.51

Neural Ranking Parser (Zhang and Xue, 2018a) 0.93 0.66 0.58 0.66
BERT Ranking Parser (Ross et al., 2020b) 0.93 0.74 0.58 0.71

DocTime 0.96 0.75 0.72 0.77

Contract-TDG
Heuristic 0.45 0.36 0.18 0.33

Neural Ranking Parser (Zhang and Xue, 2018a) 0.57 0.45 0.29 0.48
BERT Ranking Parser (Ross et al., 2020b) 0.70 0.54 0.33 0.61

DocTime 0.75 0.56 0.39 0.64

Table 6: Performance (F1 score) of DocTime across timex-
timex, event-timex and event-event pairs for dependency struc-
ture+relation prediction on TDG and ContractTDG datasets.
DocTime outperforms all baselines on every setting.

informed Transformer architectures such as
Time-Transformer can improve the perfor-
mance of several downstream tasks that require
temporal reasoning at the sentence-level as well as
at the document-level.
Impact of Long-term Dependency on
Time-Transformer performance: We
plot Fig. 4 to understand the capability of Trans-
former models to handle the long-term dependency
in temporal reasoning on the TimeQA dataset. Plot
shows the exact match (EM) accuracy vs length of
the input document for hard samples. We use Big-
Bird and FiD models fine-tuned on NQ + TimeQA
as backbone models. BigBird’s performance
degrades rapidly as the length increases to over
5000 tokens, while the FiD’s performance is quite
uniformly distributed across different document
lengths due to it’s strong capability to deal with
long-term dependency. Time-BigBird and
Time-FiD follow a similar trend and maintain
steady improvements over their corresponding
baseline models with increasing in input lengths.
Space complexity analysis: We choose RoBERTa-

base as the base model to analyze the space com-
plexity. Liu et al. (2019b) reported the number
of trainable parameters in RoBERTa-Base to be
about 123 million. Time-RoBERTa introduces
an additional 2 million parameters in total due to
k-hop mask learning in the TISA layer. Therefore,
Time-BERT adds few parameters to the base model
without affecting its original space complexity.

Time Complexity analysis: We assume the num-
ber of tokens in each sentence to be n and extract k-
hop mask matrices from a text document is O(n2)
in the online inference phase. The time complex-
ity of the Transformer embedding lookup layer
is O(n). The TISA layer calculates the attention
score in O(KDqn

2) for both QKT and learns the
mask weights using a hyperbolic feedforward layer
(MWM ), where Dq is dimension of Q and K is
the number of sub-networks. The time complex-
ity of the Time-BERT remains the same for small
enough value of k (k ≤ 15 in experiments).

7 Conclusion

We present DocTime, a new temporal dependency
parsing approach that improves upon previous ap-
proaches by integrating longer term temporal infor-
mation through a graph network with a novel path
prediction loss. Additionally, we are able to show
how a TDG can be incorporated into Transformer
networks with Time-Transformer to improve on
down stream tasks for NLI and question answering.
Finally we introduce a TDG dataset in a new do-
main (Contractual documents) to expand research
in this temporal reasoning to a new application
domain. Future works will aim to explore more
ways for integrating temporal dependency graphs
into neural architectures across different applica-
tion domains. In future, we would like to explore
temporal event mining to aid various social media
applications such as improving hate speech detec-
tion (Mathur et al., 2018b; Chopra et al., 2020),
analyzing temporality in suicidal ideation detection
(Mishra et al., 2019; Mathur et al., 2020) and abuse
detection (Gautam et al., 2020; Sawhney et al.,
2021). The proposed Time-Transformer can find
applications in augmenting financial tasks (Sawh-
ney et al., 2020), affective computing (Mittal et al.,
2021), and AI for social good (Mathur et al., 2018a)
with temporal common sense reasoning.
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A Ethics Statement

We utilize two publicly available datasets - TDT
and TDG for evaluating temporal dependency
parser. We also curated dataset for TDG on contract
documents. We source these contract documents
from a publicly available resource - ATTICUS. We
repurpose the document in this dataset for our task
and provide new annotations. ContractTDG dataset
does not violate any privacy as these documents
are already in public domain. There is no human
bias involved in such documents as they are busi-
ness contracts filed on the SEC website. These
documents do not restrict reuse for academic pur-
poses and any personal information was already
redacted before their original release. All docu-
ments and our experiments are restricted to English
language. Temporal NLI and TimeQA datasets that
are publicly available for research purposes. The
crowd workers are paid a fair wage. There was no
sensitive data involved in the studies.

B Details on Graph Feature Extraction

B.1 Structural Graph Features

The Structural Graph (Gstr) enriches the token
level features with a hierarchical textual struc-
ture formed by grouping word tokens into lists
of sentences that bind together to form the text
document. Prior work has shown that transduc-
tive graph learning over Gstr can help learn the
long range word-word dependencies set several
sentences apart through hierarchical text model-
ing (Yao et al., 2019). The directed edges of
the Structural Graph encode the following rela-
tionships: (1) Document-Sentence Affiliation,
which connects each document-node to a sentence-
node; (2) Sentence-Word Affiliation, which joins
each sentence node to its constituent word nodes;
(3) Sentence-Sentence Adjacency and (4) Word-
Word Adjacency, which preserve sequential or-
dering for consecutive sentence and word nodes,
respectively. For the structural graph, a sentence
node embedding si is obtained by passing sen-
tences through a pre-trained SentenceBERT model
(Reimers and Gurevych, 2019) and the document
node embedding D is calculated as the average of
all sentence embeddings (D =

∑m
i=0 vi).

BertGCN (Lin et al., 2021) combines the advan-
tages of both large-scale pre-training and transduc-
tive learning. We input the structural graph Gstr

to BertGCN model7 where each node represents a
word, a sentence or the document. BertGCN pro-
cesses the input node feature matrix sequentially
through a Bert model to fine-tune each node to
learn local contextual representations. This is fol-
lowed by passing the learned node feature matrix
through two layers of graph convolution to take
advantage of global influence propagation through
graph edges across multi-hop nodes.

B.2 Syntactic Graph Features
Syntactic cues are useful priors for learning based
NLP tasks (Kiperwasser and Ballesteros, 2018).
Pre-trained transformer models can capture certain
syntactic information implicitly (Hewitt and Man-
ning, 2019) but Jawahar et al. (2019) showed that
BERT needs to be trained with deeper layers for
handling harder cases involving long-distance de-
pendency information. Moreover, past studies have
pointed to the existence of multi-hop coreferring
expressions in document-level text due to anaphora
and cataphora (Joshi et al., 2020).
Gsyn is made of separate nodes to represent each

constituent word wi in the document. For each doc-
ument, there is also a set of co-reference clusters
{∁1, ∁2,· · · ,∁u} referring to the same entities in the
graph. We define four types of directed edges in
Gsyn as described below where ξ denotes the set
of syntactic dependency arcs inside sentences, Sr

wi

denotes root of the sentence in which wi belongs,
and Swi → Swj represents whether sentences con-
taining words wi and wj are adjacent.

εsyn(i, j) =





dependency if (wi, wj) ∈ ξ

reversion if (wj , wi) ∈ ξ

coreference if wi, wj ∈ ∁u
self-loop if i == j

root-adjacency if wi == Sr
wi

,

& wj == Sr
wj

,

& Swi → Swj

(3)

The first two edge types are introduced to allow
information flow along and against syntactic arcs
between intra-sentential dependency relations to en-
rich contextually learned embeddings of each word.
We connect parse tree roots of adjacent sentences to
encode document level long-range syntactic relat-
edness between sentences. We add an undirected
edge between word nodes if both belong to the
same co-reference cluster. Inspired by (Kipf and
Welling, 2016), self-loop edges are added for better
message passing iterations. Gsyn is instantiated

7Implementation Used: https://github.com/
ZeroRin/BertGCN
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as a gated variant of Weighted Relational Graph
Convolutional Network (WR-GCN) (Zhang et al.,
2020) with k-layers. WR-GCN can able to model
diverse relations in a heterogeneous graph by treat-
ing different types of edges with unequal weights
assigned during message passing.

B.3 Semantic Graph Features

Semantic Role Labeling (SRL) parses text se-
quences to recognize the predicate-argument struc-
ture in the sentence to answer who did what and
when. Anchoring verb events to their temporal
argument spans extracted from semantic parsing
helps infer event relationships with their associ-
ated time expressions. This can be complemented
by discourse features in the form of RST con-
nections can help leverage long-range document-
level interactions between phrase units (Bhatia
et al., 2015) and identify background-foreground
events(Aldawsari et al., 2020) and improve tempo-
ral relationship parsing (Mathur et al., 2021b). We
utilize Document-level Rhetorical Structure Theory
(RST) parser (Shi et al., 2020) to organize contigu-
ous semantic text spans of a document into a hi-
erarchical dependency structure labeled with their
rhetorical relations.
Gsem consists of individual nodes for each con-

stituent word wi in the document. Discourse units
and temporal arguments may span several word
tokens {w1, w2, · · ·wk}. We add two types of di-
rected edge connections between - (1) event verb
predicate - temporal argument edge (εt) such that
(we → {w1, w2, · · ·wk} ∈ εt); (2) Rhetorical pair
edges (εd) labelled by the type of the rhetorical rela-
tion ({w1, w2, · · ·wi} → {w1, w2, · · ·wj} ∈ εd).

ε =

{
we → {we, · · ·wk} ∈ εt
{w1, · · ·wi} → {w1, · · ·wj} ∈ εd

(4)

The nature of edge connections in Gsem extends
beyond pairwise interactions as each edge may con-
nect to one or more word nodes. Hence, we for-
mulate the semantic graph as a hypergraph (Feng
et al., 2019) where an edge can join an arbitrary
number of vertices. We construct Gsem = (ν, ε,W)
where ν is the set of all word nodes wi, and ε is the
subset of hyperedges such that ε = εt ∪ εd. Each
hyperedge e is assigned a positive weight corre-
sponding to the type of edge relation and is stored
in a diagonal matrix W ∈ ℜ|ε|x|ε|. The semantic
graph is learned using hypergraph convolution lay-
ers (Bai et al., 2021b) to obtain discriminative node

embeddings for each word node.

C Training Setup

Hyperparameter: Hyper-parameters for
DocTime were tuned on the respective vali-
dation set to find the best configurations for
different datasets. We summarize the range
of our model’s hyper parameters such as:
number of hidden layers in WR-GCN/BERT-
GCN/HyperGraphGCN {1, 2, 3}, size of hidden
layers in WR-GCN/BERT-GCN/HyperGraphGCN
{64, 128, 256, 512}, BERT embedding size (768),
dropout δ ∈ {0.2, 0.3, 0.4, 0.5.0.6}, learning rate
λ ∈ {1e − 5, 1e − 4, 1e − 3, 1e − 2, 1e − 1},
weight decay ω ∈ {1e− 6, 1e− 5, 1e− 4, 1e− 3},
batch size b ∈ {16, 32, 64} and epochs (≤ 100),
ϵ-sparsity ∈ [0, 1], IDGL smoothness ratio=0.5,
IDGL sparsity ratio=0.5, IDGL connectivity
ratio=0.5, size of hidden layers in Graph U-net
{64, 128, 256, 512}.
Loss Function and Inference:
Time-Transformers are trained using
Cross Entropy loss with Adam optimizer. Across
both TempNLI and TimeQA datasets, we found
the best results correspond with the use of Adam
optimiser set with default values β1 = 0.9,
β2 = 0.999, ϵ = 1e − 8, weight-decay of 5e − 4
and an initial learning rate of 0.001.
DocTime uses cross entropy loss for structure

prediction. For structure+relation classification, it
uses the path prediction loss as defined in Method-
ology.
Computing Infrastructue: DocTime and
Time-Tranformers are written in PyTorch li-
brary and were trained on 4 and 6 Nvidia GeForce
RTX 2080 GPU, respectively. Average Run-
time: DocTime takes a maximum of approx-
imately 5 hrs to train once on TDG datasets.
Time-BERT, Time-RoBERTa take 3 hrs to fine-
tune on TempNLI. Time-BigBird, Time-FiD
takes 8,12 hours to fine-tune, respectively.
Dataset Access

Links to download TDT dataset:
https://github.com/yuchenz/crowdsourced_

EN_TDT_corpus

Link to download TDG dataset: https:

//github.com/Jryao/temporal_dependency_

graphs_crowdsourcing

Link to download Temporal NLI dataset: https:

//github.com/sidsvash26/temporal_nli

Link to download TimeQA dataset: https://
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Corpus Model Structure + Relation (F1)
te,te e,te e,e full

TD-Graphs
Heuristic 0.82 0.58 0.34 0.51

Neural Ranking Parser (Zhang and Xue, 2018a) 0.93 0.66 0.58 0.66
BERT Ranking Parser (Ross et al., 2020b) 0.93 0.74 0.58 0.71

DocTime 0.96 0.75 0.72 0.77

Contract-TDG
Heuristic 0.45 0.36 0.18 0.33

Neural Ranking Parser (Zhang and Xue, 2018a) 0.57 0.45 0.29 0.48
BERT Ranking Parser (Ross et al., 2020b) 0.70 0.54 0.33 0.61

DocTime 0.75 0.56 0.39 0.64

Table 7: Performance (F1 score) of DocTime across timex-
timex, event-timex and event-event pairs for dependency struc-
ture+relation prediction on TDG and ContractTDG datasets.
DocTime outperforms all baselines on every setting.

github.com/wenhuchen/Time-Sensitive-QA

D Hyperparameters

Table 8 show the Training hyperparameters of
DocTime for TDT, TDG, ContractTDG datasets.

E More Results

Performance across different relation types:
We analyze the benefits of DocTime for differ-
ent types of relations in document-level TDG
datasets in Table 7. We report F1 scores for struc-
ture+relation prediction for timex-timex, event-
timex and event-event pairs. We observe a rela-
tively smaller performance gap between the BERT
Ranking parser and DocTime for event-timex
relations. However, DocTime shows relatively
stronger performance for event-event relations.
This phenomenon can be attributed to the fact that
both datasets tend to have event-event links be-
tween event pairs that are on an average closer
in word distance, whereas a higher ratio of event-
timex and timex-timex pairs are several sentences
apart. DocTime can integrate long-range inter-
dependencies between entity pairs that are several
sentences (or paragraphs in Contract TDG) apart.
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Dataset
Hyperparameters TDT TDG Contract

Dropout Ratio 0.5 0.5 0.5
Optimizer Adam Adam Adam
Input Dimension (Structural Graph) (n,768) (n,768) (n,768)
Input Dimension (Syntactic Graph) (n,768) (n,768) (n,768)
Input Dimension (Semantic Graph) (n,768) (n,768) (n,768)
Hidden Dimension (WR-GCN) 256 256 64
Number of hidden layers (WR-GCN) 2 2 2
Hidden Dimension (BERT-GCN) 256 256 64
Number of hidden layers (BERT-GCN) 1 1 1
Hidden Dimension (HyperGCN) 256 256 64
Number of hidden layers (HyperGCN) 2 2 2
Epochs 20 20 20
Batch Size 8 8 16
Learning Rate 2e-5 2e-5 2e-5
Activation Function of Linear layers ReLU ReLU ReLU

Table 8: Hyperparameters Details: Training hyperparameters of DocTime for TDT, TDG, ContractTDG
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