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Abstract

Automated scientific fact checking is difficult
due to the complexity of scientific language
and a lack of significant amounts of training
data, as annotation requires domain expertise.
To address this challenge, we propose scien-
tific claim generation, the task of generating
one or more atomic and verifiable claims from
scientific sentences, and demonstrate its use-
fulness in zero-shot fact checking for biomedi-
cal claims. We propose CLAIMGEN-BART, a
new supervised method for generating claims
supported by the literature, as well as KBIN,
a novel method for generating claim nega-
tions. Additionally, we adapt an existing
unsupervised entity-centric method of claim
generation to biomedical claims, which we
call CLAIMGEN-ENTITY. Experiments on
zero-shot fact checking demonstrate that both
CLAIMGEN-ENTITY and CLAIMGEN-BART,
coupled with KBIN, achieve up to 90% perfor-
mance of fully supervised models trained on
manually annotated claims and evidence. A
rigorous evaluation study demonstrates signifi-
cant improvement in generated claim and nega-
tion quality over existing baselines.1

1 Introduction

Scientific documents contain complex assertions
about scientific processes, making it difficult to au-
tomate important tasks such as claim extraction and
scientific fact checking. Additionally, the collec-
tion of manually annotated labels to train models
on tasks with scientific data is time consuming
and expensive due to the need for domain exper-
tise (Collins et al., 2017; Augenstein and Søgaard,
2017; Lehman et al., 2019; Wadden et al., 2020;
DeYoung et al., 2021). As such, methods which re-
quire less manual annotation are especially useful
in this domain. This work addresses this challenge

∗Work completed while an intern at AI2
1Code and data available at: https://github.com/

allenai/scientific-claim-generation

(1) ALS is the most common adult motor neuron disease with an
incidence of 2 per 100,000 and prevalence of 5.4 per 100,000

individuals. (2) Current treatment options are based on symptom
management and respiratory support with the only approved

medications in widespread use, Riluzole and Edaravone,
providing only modest benefits and only in some patients. 

Current treatment options for ALS are based on symptom
management and respiratory support

Riluzole is an approved ALS medication in widespread use

Edaravone is an approved ALS medication in widespread use

Riluzole and Edaravone are the only approved ALS medications in
widespread use

Riluzole provides modest benefits in only some ALS patients

Edaravone provides modest benefits in only some ALS patients

Figure 1: A complex excerpt from Mejzini et al. (2019)
(top) and the set of valid claims that can be generated
from the bolded sentence (c1-c6).

by exploring how automatic generation of scien-
tific claims can assist with dataset creation and
zero-shot fact checking in the biomedical domain.

Being able to reduce scientific text to atomic as-
sertions has numerous possible applications, and
is known to be helpful for scientific communi-
cation and machine processing of scientific con-
cepts (Kuhn et al., 2013). Claim generation can
enable zero-shot fact checking, reducing the need
for expert-labeled data (Pan et al., 2021), and can
be used to expand existing datasets such as Wadden
et al. (2020) and Saakyan et al. (2021) without addi-
tional manual annotation. In this work we focus on
the use of claim generation in scientific fact check-
ing, demonstrating that claim generation enables
zero-shot biomedical fact checking.

Generating scientific claims involves distilling a
complex scientific sentence into one or more valid
claims (see examples in Figure 1). As in previous
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work, we focus on biomedical claims as biomedical
literature has long been a major focus in scientific
natural language processing, as well as scientific
fact checking (Saakyan et al., 2021; Wadden et al.,
2020; Kotonya and Toni, 2020). While in Wadden
et al. (2020), claims were rewritten by domain ex-
perts from complex citation sentences (citances),
we propose methods for automatically generating
claims and claim negations from this source.

Similar to other generation tasks, evaluating the
quality of generated output requires multiple judge-
ments beyond the fluency of the generated text,
e.g., whether each claim is faithful to the source
sentence, and is understandable on its own (Sai
et al., 2020). However, there are also other quality
attributes that are important to assess specifically
for scientific claims, such as whether each claim is
atomic or check-worthy (Wright and Augenstein,
2020). Given this, we propose a set of manual
evaluation criteria and annotation guidelines for
evaluating claim generation (§5.2).

Additionally, when generating claims to build
datasets for tasks such as fact checking, a major
challenge is creating refuted claims as negative
training instances. Previous work has proposed
automatic ways of generating refutations based
on negating existing claims or creating claim vari-
ants via entity-replacement (Pan et al., 2021) and
text-infilling using a pre-trained masked language
model (Saakyan et al., 2021). We improve upon
this by introducing Knowledge Base Informed
Negations (KBIN), a principled method to gen-
erate refutations that performs entity-replacement
using the relations and learned embeddings of enti-
ties in a domain-specific knowledge base.

Contributions In sum, our contributions are:

• The first study on scientific claim generation,
comparing both unsupervised (CLAIMGEN-
ENTITY) and fully supervised (CLAIMGEN-
BART) generation on biomedical text.

• KBIN, a novel method for generating refuted
scientific claims which produces more con-
vincing negations than previous work.

• Application of our claim generation methods
on zero-shot scientific fact checking resulting
in 90% of the performance of a model trained
on in-domain manually written claims. Addi-
tionally, a rigorous evaluation study showing
that CLAIMGEN-BART and KBIN produce
significantly higher quality claims and more
convincing negations than previous work.

2 Preliminaries

Valid Claims In this work, we define a valid
claim as one which is fluent, atomic, de-
contextualized, and accurately reflects the mean-
ing of the original sentence. Fluency is concerned
with a claim being a generally well-formed English
sentence, and atomicity with a claim being a “ver-
ifiable statement expressing a finding about one
aspect of a scientific entity or process, which can
be verified from a single source” (Wadden et al.,
2020). De-contextualilzation is concerned with a
sentence being interpretable on its own, requiring
none of the original surrounding text to resolve
aspects of the sentence such as pronouns, abbrevi-
ations, etc., and can be handled by either directly
de-contextualizing a sentence (Choi et al., 2021)
or by ensuring that all of the context sentences are
available to a model (Wadden et al., 2021). Check-
worthy claims in the wild may not be fluent, atomic,
or de-contextualized, however it is useful to gen-
erate such claims as they have been shown to be
useful for automated processing of science con-
cepts (Kuhn et al., 2013) and scientific fact check-
ing (Wadden et al., 2020).

Scientific Claim Generation At a high level, sci-
entific claim generation is the task of distilling one
or more valid claims from one or more sentences
concerned with a scientific fact. More specifically,
the task is defined as: given a scientific sentence
s and optionally additional context sentences X ,
generate one or more claims ci ∈ C which are
valid and entailed by s and X . In the context of
fact checking, we must generate claims which are
either supported or refuted by the literature, as
well as those for which not enough information
is present to make a veracity judgement, in order
that they may be paired with appropriate evidence
documents to serve as training data for fact check-
ing systems. As such, we require methods which
can take the claims in C which are entailed by the
source sentence and generate negations to acquire
refuted claims.

3 Generating Supported Claims

We experiment with two generation methods de-
signed to produce claims which are supported by
the source sentence. The first method is an entity-
centric unsupervised method adapted from Pan et al.
(2021) which requires no <sentence, claim> pairs
(CLAIMGEN-ENTITY). We also introduce a new
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Exergames improve function and
reduce the risk of falls.

UMLS

C0184511
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T033: "Finding"

Exergames worse function and
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Exergames deteriorating function
and reduce the risk of falls.

Exergames worsened function and
reduce the risk of falls.

GPT-2 Ranker

Exergames deteriorate function
and reduce the risk of falls.

cui2vec

Figure 2: KBIN method. We start with NER and linking to UMLS using scispaCy. We then find the most similar
concepts with the same type using cui2vec, replace the entity in the source sentence using the canonical name
and aliases of similar entities, and rank them using GPT-2. Finally, from the highest ranked replacements, we
select the claim which maximizes contradiction with the original claim using an external NLI model.

method that uses BART (Lewis et al., 2020) trained
on a small set of <sentence, claim> pairs to directly
generate claims (CLAIMGEN-BART). For each
sample i, we refer to the input source sentence as si,
the context sentences as x(i)l ∈ Xi and the output
claims as Ci consisting of k claims {c(i)1 . . . c

(i)
k }

Following Wadden et al. (2020), we use citation
sentences as unlabelled sentences for generation
since these provide a natural link to an evidence
document. Various components of our modeling
pipelines take advantage of models pretrained on
datasets for NER, NLI, QA, and fact-checking. We
provide an overview of these datasets in §A.4.

3.1 CLAIMGEN-ENTITY

We adapt the entity-centric method presented in
Pan et al. (2021) as an unsupervised claim genera-
tion approach. This method has been tested on gen-
eral domain fact checking, but has not been used for
science claim generation and zero-shot scientific
fact checking. In particular, we re-implement the
base method used for generating supported claims
and adapt it to the biomedical domain, substituting
in a domain specific model for named-entity recog-
nition. The method consists of the following steps
for a given sample i:

1. Run named entity recognition (NER) on the
input text to obtain a set of named entities Ei.

2. For each named entity e(i)j , generate a ques-

tion q(i)j about that entity which can be an-
swered from si.

3. From q
(i)
j , generate the declarative form of the

question to obtain claim c
(i)
j .

Named Entity Recognition For NER, we em-
ploy scispaCy (Neumann et al., 2019), a spaCy2

2https://spacy.io/

pipeline for scientific NLP. The NER model is
trained on the MedMentions dataset (Mohan and Li,
2019), which consists of 4,392 PubMed abstracts
exhaustively annotated for mentions of UMLS en-
tities (Bodenreider, 2004).

Question Generation For question genera-
tion, we use BART trained on questions from
SQuAD (Rajpurkar et al., 2016). As input for train-
ing, we encode a concatenation of the context and
answer text from a given SQuAD question, and
train the model to decode the question. During in-
ference, we concatenate the source sentence si and
an entity e(i)j and sample a question q(i)j for this
pair using beam search.

Question to Claim Finally, as in Pan et al.
(2021), we use a second BART model to gener-
ate declarative claims from questions. We train the
model on the QA2D dataset (Demszky et al., 2018),
which contains declarative full sentences paired
with questions and their answer from SQuAD. The
model is trained by encoding a concatenation of the
question and answer, and decoding the full declar-
ative sentence. At inference time, we concatenate
and encode q(i)j and e(i)j , and use beam search at

the decoder to generate a claim c
(i)
j .

3.2 CLAIMGEN-BART

We introduce a fully-supervised model for claim
generation based on BART trained on <citance,
claim> pairs. For this, we use the manual citance
re-writes released by the SciFact authors,3 which
consist of citances from scientific papers rewritten
as one or more atomic claims which are directly
entailed by the citance.

3https://github.com/allenai/scifact/blob/master/doc/claims-
with-citances.md
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Algorithm 1 KBIN algorithm

1: function GETNEGATION(c,KB, V,N )
2: E ← NER(c)
3: C̄ ← []
4: for ej in E do
5: uj ← LINK(ej)
6: R← KB.siblings(uj)
7: filter(R,KB.type(uj))
8: dist← cosdist(V [uj ], V [R])
9: for r in argsort(dist)[: N ] do

10: A← KB.aliases(R[r])
11: T ← replace(c, ej , a) for a in A
12: C̄.add(rank_perplexity(T )[0])
13: end for
14: end for
15: return rank_contradiction(c, C̄)[0]
16: end function

For training, we encode the citance, as well as
the sentences immediately before and after the ci-
tance (the context), and train the decoder to gen-
erate claims directly. We choose to encode the
context as well to help de-contextualize generated
claims. We concatenate the citance and context
using a double pipe (i.e. Xi||si), and train the
encoder to generate one claim at a time. We use
top-k sampling to generate multiple claims, with
k set to the number of noun chunks in the original
source citance.4

4 Knowledge Base Informed Negations

CLAIMGEN-ENTITY and CLAIMGEN-BART only
produce claims which are entailed by the source
sentence. Additionally, we are interested in pro-
ducing claim variants which are directly refuted by
the original sentence, as these negations are needed
when building fact checking datasets and for train-
ing fact checking models. Work in Wadden et al.
(2020) created these negations manually, and some
work has begun to explore automatically generat-
ing these negations for scientific claims (Saakyan
et al., 2021). To this end, we leverage the availabil-
ity of large curated biomedical knowledge bases
to develop a principled approach to claim vari-
ant generation. In particular, we use the UMLS
metathesaurus (Bodenreider, 2004), which unifies
hundreds of different ontologies in biomedicine, as
a source of term replacements for negations.

We provide an overview of the KBIN algorithm

4We use scispaCy to identify noun chunks

in Algorithm 1 and Figure 2. KBIN works by first
performing NER on an input claim c, obtaining
entities {e1, . . . , en} ∈ E. For each entity ej in
E, we link the entity to its unique concept uj in
UMLS using the scispaCy entity linker. If the en-
tity is linked, we select all concepts which are sib-
lings to uj in the concept hierarchy, and which
have the same semantic type (e.g. “Clinical Drug”).
We rank all selected concepts by their cosine dis-
tance to the entity concept using pre-trained UMLS
concept vectors, retaining the top 20 closest con-
cepts. For this, we use cui2vec (Beam et al.,
2020), which contains pre-trained concept vectors
for 108,477 concepts from UMLS trained on medi-
cal documents from diverse sources.

For each of the related concepts, we generate
candidate claim variants by replacing the entity
text in the original claim with the canonical name
and aliases of the related concept from UMLS. We
rank all replacement sentences by their perplexity
using a pre-trained GPT-2 model (Radford et al.,
2019), keeping the sentence with least perplexity
for each replacement. Finally, from among these
most fluent sentences, we select the replacement
which maximizes the NLI prediction of contradic-
tion with the original claim. For this, we use a
RoBERTa model (Liu et al., 2019) pre-trained on
MNLI (Williams et al., 2018).

5 Experiments

We investigate three primary research questions:

RQ1 Do automatically generated claims enable
zero-shot scientific fact checking?

RQ2 What is the percentage of high-quality claims
generated using our methods?

RQ3 How does KBIN compare with previous
work for claim negation in terms of generat-
ing contradictions?

For RQ1, we use CLAIMGEN-ENTITY and
CLAIMGEN-BART generated claims to train a
fact checking model, evaluating on the SciFact
dataset (Wadden et al., 2020) and comparing to
relevant baselines. To answer RQ2 and RQ3, we
design annotation criteria and perform manual eval-
uations with a group of expert annotators (details
in §5.2).

5.1 RQ1: Fact Checking Performance
SciFact Task The SciFact fact verification task
consists of: given a claim c and a corpus of scien-
tific abstracts D, retrieve evidence abstracts from
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D, predict if the claim is supported or refuted by
those documents or if there is not enough infor-
mation (NEI) to make a prediction, and optionally
determine what the rationale sentences are that ex-
plain the prediction. Here we focus on the oracle
abstract setting of the task, in which gold abstracts
are provided to the model and there is no retrieval
component. This setup exists in the scientific fact
checking literature (Saakyan et al., 2021), and al-
lows us to focus on one component of the fact
checking pipeline for evaluating the impacts of
claim generation.

Creating Training Data for the Zero-shot Set-
ting We require a set of claim-abstract pairs for
training where the abstract either supports, refutes,
or does not provide evidence for the given claim.
We exploit citation relationships to generate claims
paired with potential evidence, using citances from
the CiteWorth dataset (Wright and Augenstein,
2021) as source citances for generation. Supports
claims are produced by directly pairing a generated
claim with the abstracts of documents cited by the
source citance. For refutes claims, we negate a
generated claim using KBIN and pair it with the
same abstract. For claims labelled NEI, we pair the
generated claim or negated claim with the abstract
of the source document of the citance; the source
document is related to the claim but presumably
does not directly support or refute the claim given
the need for a citation.

Experimental Setup In our experimental setup,
we use LongChecker (Wadden et al., 2021), a Long-
former (Beltagy et al., 2020) model adapted for
scientific fact checking. The model forms its input
by concatenating a claim with its evidence abstract,
inserting separator tokens between sentences, and
uses a classification head to predict the veracity
label from the representation of the [CLS] token.

We explore several different setups for our train-
ing data. As a baseline, we experiment with pre-
training only on FEVER claims (Thorne et al.,
2018), which are general domain fact checking
data based on Wikipedia. We also include an ex-
periment where we manually tune a threshold for
the prediction of NEI on the SciFact training data,
as we saw that the model tends to overpredict
this label without any fine-tuning on in-domain
data. We also provide an upper bound on per-
formance by fine-tuning on the in-domain train
split of SciFact. Finally, we experiment with both

Method P R F1

FEVER only 86.21 11.96 21.01
FEVER + thresh 69.15 66.51 67.80
SciFact (Upper Bound) 77.88 77.51 77.70

CLAIMGEN-ENTITY 72.86 69.38 71.08
CLAIMGEN-BART 64.09 79.43 70.94

Table 1: Results for veracity prediction on the SciFact
dataset using different sources of training data.

CLAIMGEN-ENTITY and CLAIMGEN-BART as
sources of training data generated from CiteWorth
citances, pairing both with KBIN for negations.
We note that though CLAIMGEN-BART requires
manually re-written claims as training data for gen-
erating supports claims, it does not use any claims
paired with evidence manually labelled for verac-
ity, thus making it zero-shot for the SciFact fact-
checking task. In all cases we test on the SciFact
dev split. Hyperparameter information, including
number of training instances, is given in §A.3, and
code and data will be released upon paper accep-
tance. In all cases, results are reported as macro-F1.

Results Our results on SciFact are given in Ta-
ble 1. With an upper bound of 77.70 F1, we see
that a model fine-tuned on automatically generated
claims is able to achieve within 90% of the perfor-
mance of a model trained on in-domain manually
written claims. This is also invariant to the method
used to generate claims, as both CLAIMGEN-
ENTITY and CLAIMGEN-BART produce similar
results. Additionally, both methods provide signifi-
cant gains over pre-training on FEVER only, espe-
cially when no threshold on NEI claims is used but
also when re-calibrating the model to predict NEI
less often.

5.2 RQ2: Claim Quality Evaluation

Next, we explore if there are differences between
our methods in terms of claim quality and the per-
centage of valid claims. For this, we ask three ex-
pert annotators to manually assess generated claims
along a number of quality criteria. One annotator
has undergraduate training in the life sciences and
graduate training in computer science; the other
two annotators have undergraduate training in the
life sciences and materials science respectively. We
define a set of criteria for evaluation, given in Ta-
ble 2. These criteria are inspired by the AIDA
(Atomic, Independent, Declarative, and Absolute)
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Metric Labels

Fluency
3 - The claim contains no grammatical errors and its meaning can be understood
2 - The claim contains some grammatical errors but is still understandable
1- The claim contains many grammatical errors and cannot be understood

De-Contextualized
1 - The claim is interpretable on its own and requires no context; the addition of the
original context does not alter the meaning of the claim
0 - The claim cannot be interpreted in a meaningful way without the original context

Atomicity 1 - The claim is about a single entity/process (atomic)
0 - The claim is non-atomic and can be broken down into multiple claims

Faithfulness

5 - The claim is correct and fully supported and complete with respect to the original
sentence and context
4 - The claim is correct with respect to the original sentence and context but leaves out
information from the original sentence and context
3 - The claim is related to the original sentence and does not contain incorrect infor-
mation but is not explicitly stated in the original sentence
2 - The claim contains explicitly incorrect information relative to the original sentence
and context
1 - The claim has nothing to do with the original sentence

Table 2: Claim quality evaluation metrics and their possible values

framework for scientific claims introduced in Kuhn
et al. (2013). They are also based on similar human
evaluation criteria used to assess generation qual-
ity for related tasks (Sai et al., 2020). We develop
an initial set of guidelines for the annotators and
conduct two rounds of pilot annotations to improve
instructions and increase agreement. For the final
evaluation, we generate claims on a set of 100 ci-
tances sampled from the CiteWorth dataset (Wright
and Augenstein, 2021), which contains citations in
context for over 1M citances spanning 10 domains.

We limit the citances to those from papers in
biology and medicine to match the domain of Sci-
Fact. Annotator agreement is measured as Krip-
pendorff’s α (Krippendorff, 2011) on 236 claims
for each category except fluency, where we mea-
sure the percentage of claims where all annota-
tors agree.5 The annotators then assess 1,049 total
claims (including the 236 shared claims). Each
annotator rates all criteria for an individual claim,
starting with fluency, then de-contextualized, then
atomicity, then faithfulness. We are mainly inter-
ested in claim quality and yield, so annotators only
annotate “de-contextualized” if the claim is legible
(fluency > 1), and only annotate “atomicity” and
“faithfulness” if the claim is also de-contextualized
(so one is able to discern meaning from the claim).
This results in the following rules for acceptable

5Fluency agreement is measured in terms of agreement
percentage as most ratings are the same (3), thus any disagree-
ments have an oversized influence on α.

claims based on the definitions for the labels in each
category: Fluency > 1 AND De-Contextualized =
1 AND Atomicity = 1 AND Faithfulness > 3. An
acceptable claim is thus legible, meaningful, repre-
sents a single aspect of a scientific entity or process,
and accurately reflects the information presented
in the original citance.

The results of claim quality annotation are given
in Table 3. Note that these are on claims generated
by CLAIMGEN-ENTITY and CLAIMGEN-BART
(see examples in Table 4), and thus are only sup-
ports claims. We first note that inter-annotator
agreement is very high for fluency and moder-
ate across all other criteria. Generated claims are
quite fluent across methods, with a small minor-
ity of instances being illegible. Unsurprisingly,
CLAIMGEN-BART improves over CLAIMGEN-
ENTITY across all categories except for atomic-
ity. This intuitively makes sense as CLAIMGEN-
ENTITY directly produces claims which are about a
single entity. CLAIMGEN-ENTITY yields a higher
number of claims per citance as it generates one
claim for every entity in the sentence, but the pre-
cision of acceptable claims is much lower than
that of CLAIMGEN-BART. Thus, there is a trade-
off between the two methods between the number
of claims generated and their acceptability. While
higher yield could lead to higher coverage of claims
in the original text, this study is left to future work.

Next, we examine the similarity between gen-
erated claims and manually written claims from
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Method Fluency De-Con. (%) Atomic (%) Faithfulness # Gen # Accept P

CLAIMGEN-ENTITY 2.51 55.63 85.28 3.54 893 111 12.43
CLAIMGEN-BART 2.74 84.35 80.65 4.15 156 69 44.23

α (236 claims) 82.74 64.53 58.71 53.01 - - -

Table 3: Average annotation score, agreement, and claim yield for each category. De-contextualized is only anno-
tated if fluency > 1; atomicity and faithfulness are only annotated if fluency > 1 and de-contextualized == 1. # Gen
are the total claims generated by the method, and # Accept are the number of acceptable claims generated.

Citance Generated Fl,D,A,Fa

Due to its geographic position and geological history, the is-
land of Sardinia is characterized by a remarkable richness of
endemic species and represents one of the most prominent
biodiversity hotspots in the Mediterranean basin.

The island of Sardinia is character-
ized by a remarkable richness of
endemic species.

3,1,1,5

Frequently reported symptom-eliciting chemicals and envi-
ronmental agents include fragranted products, motor-vehicle
exhaust fumes, cleaning agents, freshly printed papers or
magazines, and smoke from wood burners.

Frequently reported symptom-
eliciting chemicals and environ-
mental agents are fragranted
products.

3,1,1,5

The herbicide inhibits EPSPS (5-enolpyruvylshikimate-3-
phosphate synthase) in the shikimate pathway, which has a
key role in the biosynthesis of aromatic amino acids and is
required for survival of the plant.

The herbicide inhibits EPSPS in
the shikimate pathway.

3,1,1,5

Experimental models of OA, such as the intra-articular injec-
tion of monosodium acetate (MIA), are associated with joint
pathology and pain behaviour comparable to clinical OA.

OA is associated with joint pathol-
ogy and pain behaviour compara-
ble to clinical OA.

3,1,0,4

Table 4: Sample generated claims with their ratings for (Fl)uency, (D)e-Contextualized, (A)tomicity, (Fa)ithfulness

Method R-1 R-2 R-L

Entity 47.12 27.63 42.30
BART 56.58 40.12 53.38

Table 5: ROUGE score between generated and manu-
ally written reference claims in the SciFact dataset

SciFact. We generate claims for each source ci-
tance si in the SciFact dev split, and calculate the
ROUGE score (Lin, 2004) between each generated
claim c

(i)
j and each manually written claim d

(i)
k .

From this, we take an average of the max ROUGE
score for each generated claim. Formally, given
|C| claims we calculate:

score =
1

|C|
∑
i

∑
j

max
k

ROUGE(c
(i)
j , d

(i)
k )

Our evaluation results are given in Table 5. Both
methods produce claims which have high overlap
with the reference claims, though claims gener-
ated directly using BART are significantly closer
to the reference claims than those generated using
CLAIMGEN-ENTITY. Finally, we note the these
scores are in the range of state-of-the-art models

used for paraphrase generation, establishing a solid
baseline for this task (Zhou and Bhat, 2021).

5.3 RQ3: Negation Evaluation

Finally, we perform a manual evaluation to com-
pare KBIN against other methods of negation gen-
eration. Annotators evaluate negations based on
Fluency and Entailment. We adopt the definitions
used to annotate the SNLI corpus (Bowman et al.,
2015), in which the annotator is given an original
claim (premise) and a generated negation (hypoth-
esis) and asked to select from among the following
options, including a SKIP option for Fluency:

3 The hypothesis is DEFINITELY FALSE
given the premise

2 The hypothesis MIGHT BE TRUE given the
premise

1 The hypothesis is DEFINITELY TRUE
given the premise

SKIP The hypothesis contains a lot of gram-
matical errors and cannot be understood

We compare KBIN to two baselines. The first
baseline replaces a single entity in the claim with
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Original Claim Method Generated Negation

Tonic signaling from the SCFV pre-
vents constitutive stimulation.

Entity replace Tonic signaling from the SCFV under care
of respiratory physician (finding) constitu-
tive stimulation.

Saakyan et al. (2021) Tonic signaling from the inflammatory stim-
ulation.

KBIN Tonic signaling from the SCFV accelerates
constitutive stimulation.

Activation of the RAC1 homolog
CED-10 kills viable cells in SRGP-
1 mutant Caenorhabditis Elegans.

Entity replace Activation of the LASS4 homolog CED-
10 kills viable cells in SRGP-1 mutant
Caenorhabditis Elegans.

Saakyan et al. (2021) Activation of the RAC1 homolog CED-10
kills viable cells in SRGP-1 Helicobacter El-
egans.

KBIN Activation of the RAC1 homolog CED-
10 mediate viable cells in SRGP-1 mutant
Caenorhabditis Elegans.

Table 6: Example negations generated using three methods. Span replacements are highlighted in red. In addition
to replacing noun phrases, KBIN also has the ability to replace verb phrases as shown in these examples.

Entailment
Method Fluency 3 2 1

Entity replace 83 1 81 1
Saakyan et al. (2021) 83 10 64 9
KBIN 93 15 75 3

Table 7: Results for manual annotation of claim nega-
tions on 100 negations for each method. Fluent claims
received annotations other than “SKIP”.

a random entity of the same type, similar to the
method in Pan et al. (2021). The second is the pro-
posed negation generation method in Saakyan et al.
(2021). The method is based on extracting key-
words using YAKE (Campos et al., 2020) (an unsu-
pervised method based on statistical text features),
replacing those keywords using text infilling with
a pre-trained language model, and selecting the
replacement with the highest contradiction score
using a model pre-trained for NLI. We generate
negations for 100 claims using all three methods.
For annotation, generated negations from all three
methods are aggregated and the order of negation
method randomized for each of the 100 claims.

Example negations generated by all three meth-
ods are given in Table 6 and annotation results
for fluency and entailment are given in Table 7.
First, KBIN produces more fluent claims than both
baselines. Additionally, KBIN produces more con-
vincing negations on average than both baselines.
We observe that the most common operation per-
formed by all three methods is to replace a noun

phrase. KBIN has the benefit of being able to re-
place many entity types corresponding to concepts
found in UMLS, which also include verb phrases
that encode relations. Finally, KBIN improves
over the baseline from Saakyan et al. (2021) by
producing fewer claims which are directly entailed
by the source claim, i.e., that maintain the original
meaning and do not negate the original claim.

5.4 Further Analysis

To give further insight into the quality of claims
generated using our methods, we perform an exper-
iment where we train and test models for scientific
fact checking using claims only. This “claim-only”
experiment helps us assess whether the negation
process introduces data artifacts that can be lever-
aged by the model to predict veracity. We present
results from training on claims generated using
CLAIMGEN-BART and KBIN, compared against
training on the original SciFact training data (which
has manually written negations), along with ran-
dom and majority baselines, in Figure 3.

We observe that there are likely some dataset
artifacts in the original SciFact claims that lead to
model performance well above the majority and
random baselines.6 This phenomenon has been

6It is difficult to fully separate the contributions of data
artifacts and model performance in this setting, i.e., there is
no situation which guarantees *no* undesirable data artifacts.
Performance ought to be better than a random baseline in this
theoretical setting, due to the pretrained language model likely
having had some exposure to the content of the claims during
pretraining.
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Figure 3: Fact checking performance of models trained
only on claims (i.e. no evidence). Training on our
generated claims result in performance closer to ran-
dom (indicating fewer data artifacts) than training on
the original SciFact claims.

observed in general domain natural language infer-
ence datasets as well (Poliak et al., 2018). Training
on claims generated using our methods results in
performance that is much more proximal to ran-
dom performance on the SciFact dev set, indicating
that the label-associated bias in the original train-
ing data is not present and a possible domain shift
between the original SciFact claims and our gen-
erated claims. This can further explain some of
the performance gap we observe between zero-shot
fact-checking and the upper bound of training on
manually labeled training data (Table 1).

6 Related Work

Scientific Fact Checking Our work follows a
line of recent literature on scientific fact check-
ing (Wadden et al., 2020). The goal of this task
is to determine the veracity of claims related to
scientific topics by retrieving appropriate docu-
ments from scientific literature, finding evidentiary
sentences from those documents, and determining
whether claims are supported, refuted, or there is
not enough evidence to make a judgement. The task
closely resembles the task of general domain fact-
checking (Thorne et al., 2018; Augenstein et al.,
2019). Well-performing systems on this task use
large language models to perform neural document
retrieval (Pradeep et al., 2020) or multi-task learn-
ing of rationale prediction and stance prediction (Li
et al., 2021; Wadden et al., 2021). Recent work on
general domain fact checking has also introduced
methods for adversarial generation of claims which
are particularly difficult to fact-check (Thorne et al.,
2019; Atanasova et al., 2020), and for performing
the task without any labeled data (Pan et al., 2021).

Our proposed methods extend zero-shot fact check-
ing to the scientific domain, demonstrating that one
can achieve 90% of the inference performance of
state-of-the-art systems without domain-specific
labeled data.

Generating Training Data Our work is also re-
lated to methods for the automatic generation of
training data. Generation of synthetic data has
been used for multiple tasks, for example question
answering (Duan et al., 2017; Riabi et al., 2021),
knowledge-base completion (Safavi et al., 2021),
and fact-checking (Pan et al., 2021). Most similar
to our setting, the COVID-Fact dataset (Saakyan
et al., 2021) contains claims related to COVID-
19 crawled from Reddit, and is constructed semi-
automatically. Claims which are supported by ev-
idence are extracted from Reddit and verified by
human annotators, while negations of these claims
are generated automatically via masked language
model infilling. KBIN improves upon the nega-
tion method proposed in this work by leveraging
in-domain structured knowledge via UMLS.

7 Conclusion

In this work, we propose the task of scientific
claim generation, presenting CLAIMGEN-BART,
CLAIMGEN-ENTITY, and KBIN to perform the
task. We demonstrate that generated claims can
be used to train a model for zero-shot scientific
fact checking and obtain within 90% of the perfor-
mance of a model trained on human-written claims.
Through a rigorous user study we demonstrate
that CLAIMGEN-BART produces higher quality
claims than CLAIMGEN-ENTITY, and that KBIN
produces more fluent and more convincing nega-
tions than previous work. Work remains to improve
claim generation quality and assess the impacts of
generated claims in other domains of science, as
well as how generated claims can be used in the
evidence retrieval component of fact checking sys-
tems. We hope that our methods will be used to
facilitate future work by enabling faster creation of
training datasets and improving the performance of
models on the timely and important task of scien-
tific fact checking.
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Model Params

RoBERTa 125M
BART 140M
GPT-2 125M
Longformer-SciFact 438M

Table 8: Model sizes.

A Reproducibility

A.1 Computing Infrastructure
All experiments were run on an Amazon Web Ser-
vices p3.2xlarge instance using a Tesla V100 GPU
with 16GB of RAM.

A.2 Number of Parameters per Model
The sizes of each of the models used in this work
are given in Table 8.

A.3 Hyperparameters
A.3.1 Fact Checking
SciFact data Learning rate: 1e-5, 5 epochs, gra-
dient accumulation for 8 batches, 1 sample per
training batch, 16-bit precision, 809 total claims.

FEVER threshold We tune the NEI threshold
on the training set of SciFact, testing values in the
range [1e-5, 2e-5, 3e-5, 4e-5, 5e-5, 1e-4, 2e-4, 3e-4,
4e-4, 5e-4, 1e-3, 2e-3, 3e-3, 4e-3, 5e-5, 0.01, 0.12,
0.2, 0.25, 0.4, 0.5, 0.75, 0.8, 0.8, 0.99, 0.999] and
find that 5e-5 produces the best result.

CLAIMGEN-BART Learning rate: 2e-6, 5
epochs, gradient accumulation for 8 batches, 1 sam-
ple per training batch, 16-bit precision, 1,561 total
training claims.

CLAIMGEN-ENTITY Learning rate: 4e-8, 5
epochs, gradient accumulation for 8 batches, 1 sam-
ple per training batch, 16-bit precision, 8,592 total
training claims.
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A.3.2 CLAIMGEN-BART
Learning rate: 2e-5, 3 epochs, linear warmup for
200 steps followed by linear decay, weight decay
of 0.01, batch size of 8.

A.4 Description of Datasets

We use a variety of datasets in this study for dif-
ferent components of models, training, and testing.
Here we provide a description of each and in which
module the dataset is used.

SciFact The SciFact dataset and rewritten claims
used to train CLAIMGEN-BART can be found at
https://github.com/allenai/scifact. The dataset con-
sists of 585 original citances with rewritten claims
for each of them. Each citance consists of 1-2
rewritten claims. The SciFact rewritten claims are
used to train CLAIMGEN-BART for direct claim
generation. Additionally, SciFact contains biomed-
ical claims paired with evidence abstracts and ve-
racity labels in {supports, refutes, not enough info}
and is split into train, dev, and test sets. We use the
train set for supervised fact checking experiments,
and the dev set for testing since the test set does
not come with labels.

FEVER FEVER is a general domain fact check-
ing dataset built from Wikipedia. Like SciFact,
the dataset consists of claims with paired evidence
documents with labels in {supports, refutes, not
enough info}. FEVER is used as pretraining data
for our fact checking models for zero-shot transfer
to biomedical claims. The dataset can be found
here https://fever.ai/resources.html.

MedMentions The MedMentions dataset is a
dataset of 4,392 biomedical papers annotated with
mentions of UMLS entities. It is used to train the
named entity recognition and normalization models
used by ScispaCy, which we used for named entity
recognition in CLAIMGEN-ENTITY and for nor-
malization in KBIN. The dataset can be found at
https://github.com/chanzuckerberg/MedMentions

UMLS The UMLS meta-thesaurus is a large
biomedical knowledge base which unifies hun-
dreds of different ontologies in biomedicine.
UMLS is used as the source knowledge base for
normalization and candidate selection for KBIN.
Additionally, it is the knowledge base used to train
cui2vec, which is used for candidate concept
selection in KBIN. UMLS can be found here
https://www.nlm.nih.gov/research/umls/index.html.

SQuAD The SQuAD dataset can be found
at: https://rajpurkar.github.io/SQuAD-explorer/.
SQuAD is used as training data for the ques-
tion generation module of CLAIMGEN-ENTITY.
SQuAD is a question answering dataset which con-
tains data of the form (q, c, a), where q is the ques-
tion, c is a context document, and a is an answer to
the question which can be found in the context.

QA2D The QA2D dataset can be found
at: https://worksheets.codalab.org/worksheets/
0xd4ebc52cebb84130a07cbfe81597aaf0/. QA2D
is used in the second part of the zero-shot
CLAIMGEN-ENTITY model to generate declara-
tive sentences from questions. It consists of data of
the form (s, q, a) where q is a question, a is the an-
swer to the question, and s is the declarative form
of the question containing the answer.

MNLI MNLI is a crowd-sourced collection of
433k sentence pairs annotated for textual entail-
ment. In other words, the data consists of pairs
(p, h), where p is the premise and h is the hypothe-
sis, and labels in {entailment, contradiction, neu-
tral} which say if the hypothesis entails, contra-
dicts, or is neutral towards the premise. MNLI
is used to train a RoBERTa model for entailment,
which is used by KBIN to select the best nega-
tion among a set of generated claims for a given
source citance. The dataset can be found here
https://cims.nyu.edu/ sbowman/multinli/
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