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Abstract

We release an urgency dataset that consists of English tweets relating to natural crises. The set is
annotated along with annotations of their corresponding urgency status. Additionally, we release
evaluation datasets for two low-resource languages, i.e. Sinhala and Odia, and demonstrate an
effective zero-shot transfer from English to these two languages by training cross-lingual classi-
fiers. We adopt cross-lingual embeddings constructed using different methods to extract features
of the tweets, including a few state-of-the-art contextual embeddings such as BERT, RoBERTa
and XLM-R. We train a variety of classifier architectures, supervised and semi supervised, on
the extracted features. We also further experiment with ensembling the various classifiers. With
very limited amounts of labeled data in English and zero data in the low resource languages, we
show a successful framework of training monolingual and cross-lingual classifiers using deep
learning methods which are known to be data hungry. Specifically, we show that the recent deep
contextual embeddings are also helpful when dealing with very small-scale datasets. Classifiers
that incorporate RoBERTa yield the best performance for the English urgency detection task,
with 25% F1 score absolute improvement over the baselines. For the zero-shot transfer to low re-
source languages, classifiers that use LASER features perform the best for Sinhala transfer while
XLM-R features benefit the Odia transfer the most.

1 Introduction

People all over the world use social media, e.g. Twitter, Facebook, to communicate with the outside
world during crises that are either natural or man-made. During an emergent crisis, people post to report
their well-being, ask for help, or give updates about the ongoing situation. This type of text data can
be utilized to provide situational awareness to support missions such as humanitarian assistance/disaster
relief, peacekeeping or infectious disease response. However, with the existence of more than 7,000
languages worldwide, automated human language technology does not exist for many languages.1 A
possible solution to this problem is to transfer models learned in high resource language settings such as
English to low resource languages (Ruder et al., 2019). In addition, there has been significant research
in the use of transfer models in semantic analysis of texts such as sentiment (Socher et al., 2013; Rasooli
et al., 2018) and emotion (Tafreshi and Diab, 2018).

To this end, we collect and release English, Sinhala and Odia urgency datasets that consist of tweets
relating to natural crises, annotated with urgency status. 2 To demonstrate that we are able to effectively
transfer the task of urgency detection from English to low-resource languages, we use English annotated
tweets for training, and Sinhala/Odia annotated tweets for evaluation only, therefore, exploring zero-
shot transfer. Specifically, we consider the following two tasks: a) English classification, for which we
hold out 20% of the English dataset for evaluation, and the remaining 80% for training; b) cross-lingual
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classification, for which we use the entire English dataset for training and the corresponding Sinhala or
Odia dataset for evaluation.

For the English classification task, we implement classifiers of different architectures adopting various
embeddings including BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019) and XLM-R (Conneau
et al., 2020), which we use to extract features, then train a classifier that takes the contextualized repre-
sentations of the tweets into account. For the cross-lingual classification task, we build classifiers using
the same set of architectures, but deploying various cross-lingual embeddings that are constructed us-
ing different methods: LASER (Artetxe and Schwenk, 2019) and XLM-R (Conneau et al., 2020). For
both tasks, we employ semi-supervised approaches by generating pseudo-labels for a large amount of
unlabeled tweets that are crisis related, in order to improve system performance. Last but not least, we
ensemble different classifiers to boost performance further.

2 Dataset

Tweets about many natural and human-induced disasters such as earthquakes, typhoons, and landslides
are collected by (Imran et al., 2016). We annotate a subset of them at the tweet-level on the Figure-Eight
data annotation platform3 as seen in Figure 1. The annotation tag set comprises the following four levels
of urgency:

Figure 1: Annotation interface

• Extremely Urgent: aspects of the tweet refer to an extremely urgent and difficult situation;

e.g. MT @SushmaSwaraj my uncle is in kathmandu, trapped, suffers from jaundice, chest infection,
diabetes, his number #NepalQuake

• Definitely Urgent: tweet contains content that is urgent but the level of urgency is not as high;

e.g. @MountainGuides1 Please help us find my friends parents Last heard from on way to Everest
base camp.#NepalEarthquake

3https://www.figure-eight.com/
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• Somewhat Urgent: tweet contains some content that could be considered urgent but it is not as
certain as the two categories above;

e.g. MT @dineshakula Med supplies required in Bir Hospital. Out of medical supplies
http://t.co/4pPhg2aVhg #Kathmandu #NepalQuake #hmrd

• Not Urgent: tweet does not include any content that can be considered urgent.

e.g. Prayers and thoughts with those affected by the earthquake

As it can be difficult for an annotator to decide whether a tweet is urgent, we provide four scales
of urgency which then can be converted to a binary set of tags: Urgent vs. Not Urgent. The level of
agreement between multiple contributors, confidence score, is weighted by contributors’ trust scores and
calculated on average as 68.6%. 4 52 test questions with correct labels were distributed throughout the
task for which the annotators needed to maintain a 70% accuracy.

After removing duplicates and inconsistencies, the final data consists of 1, 919 annotations as summa-
rized in Table 1. To map the 4 multiple labels to a binary representation, the Not Urgent and Somewhat
Urgent are mapped to False label, whereas the remaining two labels are mapped to True. This yields a
binary dataset of an urgent ratio of 26.7%. One of the advantages of having a fine-grained label structure
is to be able to capture the intensity level of urgency. In addition, depending on the situation, binary
urgency levels can be adjusted to reflect that e.g. higher urgency percentages for a dire situation and
lower urgency ratios for a less critical incident.

However, this also might have caused the annotation task to be more challenging. When we analyzed
the annotations, we noticed that some of the tweets about rescue efforts were particularly confusing:
tweets that are general status updates about an incident and more critical tweets that are asking for help
are both labeled as urgent, without making a distinction between the two. This demonstrates one of many
aspects of the difficulty of annotating for urgency, partially due to the tendency of labeling a tweet as
urgent even though the urgency of the event is past.

Label Total True % IAA
Extremely Urgent 134 6.98% 69.88%
Definitely Urgent 378 19.7% 72.63%
Somewhat Urgent 589 30.79% 53.69%
Not Urgent 818 42.61% 78.02%

Table 1: 4 way English Urgency Labels

2.1 Low Resource Languages
Linguistic Data Consortium (LDC) incident language (IL) packages are produced for the Low Resource
Languages for Emergent Incidents (LORELEI) program. They cover a range of genres from formal news
to informal social media, blogs and reference materials such as Wikipedia. They include parallel corpora
that has sentence-level aligned data in English and the IL.

The languages Sinhala5 (IL10) and Odia6 (IL11) are annotated at the sentence-level by native infor-
mants for urgency in a binary label distribution as illustrated in Table 2. Both languages are Indo-Aryan
languages; Sinhala is spoken primarily in Sri Lanka and Odia is spoken in the Indian state of Odisha.

Language Native Informant Parallel Corpora
Total True % # of Sentences

Sinhala 181 7.7% 415,042
Odia 510 16.1% 454,540

Table 2: IL Data Stats

4https://success.figure-eight.com/hc/en-us/articles/201855939
5LDC2018E57
6LDC2019E62
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3 Methodology

We explain our approaches to data preprocessing, English monolingual and low resource cross-lingual
classification in Sections 3.1, 3.2 and 3.3, respectively.

3.1 Preprocessing of Tweets
We adopt the tweet preprocessing procedure as described in CrisisNLP (Nguyen et al., 2016) which
removes URLs, special characters, and converts to lowercase. In addition, we remove usernames and
segment hashtags using a word segmentation tool7 e.g. #NepalEarthquake becomes nepal and earth-
quake. We apply the same preprocessing procedure to English, Sinhala and Odia, with the exception of
hashtag segmentation for Sinhala/Odia.

3.2 English Classification
To start with, we build classifiers for detecting urgency given tweets in English to establish an under-
standing of the baseline performance of this task without the effect of transferring between languages.

3.2.1 Monolingual Embeddings
For all of our classifiers, we first use word/sentence embeddings to extract features of the input tweets.
We experiment with the following variations when choosing the English embeddings: contextual and
non-contextual, and out-of-domain and in-domain. We choose two non-contextual embeddings: fastText
embeddings (Bojanowski et al., 2017) and CrisisNLP embeddings (Nguyen et al., 2016). fastText em-
beddings are trained on texts from Wikipedia and Common Crawl (both out-of-crisis-domain) whereas
CrisisNLP embeddings are trained on disaster related tweets, i.e. in-domain. Both embeddings project
each word in a sentence to a 300 dimensional vector representation. We also use BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019) and XLM-R (Conneau et al., 2020) to generate contextual represen-
tations of the tweets for English.8 A list of embeddings and their availability for each language is shown
in Table 3.

Embeddings Lang. Dimension Non
Contextual Contextual Monolingual Cross-

lingual
Out-of
domain

In
domain

fastText en 300 X X X
CrisisNLP en 300 X X X
BERT-base en 768 X X X
BERT-large en 1,024 X X X
RoBERTa-large en 1,024 X X X
XLM-mlm en 2,048 X X X
LASER si 1,024 X X X
ProcB si, or 300 X X X
VecMap si, or 300 X X X
XLM-R si, or 1,024 X X X

Table 3: Embedding Types

3.2.2 Classifier Architecture
Since we have a limited amount of annotated English tweets, we adopt relatively simpler models such as
Support Vector Machines (SVM) and Random Forest, as well as shallower neural networks: Multi-Layer
Perceptron (MLP) and Convolutional Neural Networks (CNN) as classifiers (Nguyen et al., 2016).The
task is a binary classification task where the labels correspond to urgency status of Urgent or Not Urgent.
The inputs to these classifiers are features of the tweets extracted by various embeddings mentioned in
Section 3.2.1. For MLP classifiers (shown in Figure 2), we use sentence representations that are either
contextual or using the inverse-document-frequency (idf) weighted average of the word embeddings,
with the idf-weight of each word computed on the entire English dataset. Next, we apply a sequence
of dense layers with batch normalization, Rectified Linear Unit (ReLU) activation, and dropout layers

7https://github.com/grantjenks/python-wordsegment
8Multilingual BERT is not trained on Odia or Sinhala, therefore is not included in the experiments
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in between. We empirically decide on the hyper-parameters where the optimal sequence of dense layer
width as 1, 024, 512, and 64. For CNN classifiers, we use the same architecture proposed in Crisis NLP
(Nguyen et al., 2016). Specifically, we apply a convolutional layer, followed by batch normalization,
ReLU activation and a max-pooling layer. Finally, we apply a dense layer after flattening the previous
CNN layers outputs.

Figure 2: MLP Architecture
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Figure 3: System Architecture: Transfer Learning in Zero-shot setting

3.2.3 Data Augmentation
We experiment with a semi-supervised training scheme to augment the training dataset (shown in

Algorithm 1). We adopt self-training approaches (Yarowsky, 1995; McClosky et al., 2006), in which we
add the best performing classifier’s predictions on unlabeled data to the initial training dataset, which
is manually annotated. We sample the unlabeled tweets from the same collection of disaster related
tweets (Imran et al., 2016) where we select and annotate a subset to create our English training dataset
as described in Section 2, and we make sure the set of the unlabeled tweets and the set of training data
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Algorithm 1 Incremental Training Workflow
Let source language training dataset be S
Let unlabelled source language dataset be U
Let target language testing set be T
while |S| < 16k do

Train 3 classifiers of the same type C1, C2 and C3 on S independently
Predict the labels L using C1(U), C2(U) and C3(U).
Retrieve a subset U0 from U where all classifiers agree, and the corresponding label set L0.
Break if |U0| = 0
S ← S ∪ (U0, L0)

end for
Train 3 classifiers C1, C2 and C3 on S independently
Output classifier C(T ) = Majority vote among C1(T ), C2(T ) and C3(T ).

are disjoint. To enforce consistency and reduce the bias of predictions on unlabeled data, we leverage
the agreement of three independently trained best performing English classifiers, which are trained on
RoBERTa features in this case, by adding a tweet to the training data only if all three classifiers yield
the same prediction. After a round of predictions, we obtain a larger training dataset, on which we
train another three independent top-performing classifiers and conduct a second round of predictions
on the remaining unlabeled tweets. We conduct multiple rounds of the above procedure until no more
remaining tweets would get the same prediction, and finally we obtain 16, 243 samples (including the
original 1, 952 labeled samples) for training. We also experiment with varying the size of the synthetic
data utilized, 3K, 10K, and 20K. We observe that 16K yields the best performance.

3.2.4 Ensemble Model

Algorithm 2 Ensemble Workflow
Let source language training dataset be S
Let unlabelled source language dataset be U
Let testing set be T .
for each classifier type e do

Incrementally train classifier Ce on S and U independently
end for
Majority vote among Ce(T )

To further improve the performance of the urgency detection system, we ensemble various classifiers
by vote. Instead of doing a classic majority vote, we adapt a more aggressive voting strategy that predicts
positive if any of the independent models yields positive predictions. This allows us to achieve a better
recall so that more urgent messages will be reported.

3.3 Cross-lingual Classification

The major component of the cross-lingual classification task is the cross-lingual embeddings that are
the inputs to the classifiers whose architectures are similar to those for the English tasks. By training
classifiers with these features, we are able to transfer the task of urgency detection from English to
Sinhala and Odia. The entire process of our transfer approach is shown in Figure 3 and Algorithm 1.

3.3.1 Cross-lingual Embeddings
To generate a cross-lingual embedding that can be used to transfer from English to Sinhala, we use a
parallel corpus that contains English-Sinhala sentence pairs as well as pre-trained English embeddings
and Sinhala embeddings. There are many approaches for generating cross-lingual embeddings given the
above resources, but in our study we focus on the projection-based methods of training the embeddings:
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VecMap (Artetxe et al., 2018) and Proc-B (Glavaš et al., 2019). As a first step, we use fast-align tool
(Dyer et al., 2013) to create symmetric word alignments between source and target words given the par-
allel corpus, then we choose the most frequent translation for each word (Rasooli et al., 2018). This
generates a bilingual dictionary with 72K approximate vocabulary size for each language, which is used
as a seed dictionary to generate the cross-lingual embeddings by projecting the pre-trained English and
Sinhala monolingual embeddings to the same semantic space. We employ the same procedure to generate
the English-Odia embeddings as well, given the English-Odia parallel corpus and the pre-trained English
and Odia embeddings. For all the pre-trained monolingual embeddings (English, Sinhala and Odia), we
use fastText (Grave et al., 2018) embeddings which are trained on Common Crawl and Wikipedia. In
addition, we use pre-trained contextual cross-lingual embeddings that are publicly available: LASER
(Artetxe and Schwenk, 2019) a pre-trained cross-lingual embedding trained on texts that are in 93 lan-
guages including Sinhala. XLM-R (Conneau et al., 2020) is trained on Common Crawl text data in 100
languages, including Sinhala and Odia.

Original Augmented
Embeddings Classifier Precision % Recall % F1 Score % Precision % Recall % F1 Score %
Baseline N/A 50.0 50.0 50.0 50.0 50.0 50.0

CrisisNLP

RF 66.9 56.7 55.9 76.1 64.9 66.8
SVM 36.1 50.0 41.9 75.4 61.1 61.9
MLP 71.7±1.6 70.1±1.7 70.5±1.3 72.5±1.3 63.2±0.8 64.6±1.0
CNN 73.3±1.5 67.4±1.4 69.0±1.4 73.7±1.0 62.0±0.5 63.2±0.6

fastText MLP 66.3±1.6 65.6±1.5 65.8±1.4 73.7±1.8 60.9±0.7 61.6±0.9
CNN 70.6±0.2 59.5±1.2 59.8±1.7 74.8±2.7 62.4±3.0 63.2±3.6

BERT-base MLP 71.8 76.7 71.9 70.6 71.4 71.0
BERT-large MLP 75.2 75.2 75.2 75.0 76.4 75.6
RoBERTa-large MLP 75.8 75.6 75.7 74.8 76.8 75.6
XLM-mlm-en MLP 70.5 72.8 71.3 75.3 74.1 74.6

Table 4: English Classifier Results: Precision, Recall and Macro F1 scores

Original Augmented
Embeddings Classifier Precision % Recall % F1 Score % Precision % Recall % F1 Score %

Proc-B MLP 55.6±4.5 58.5±4.6 54.6±5.1 58.3±4.3 57.4±3.8 57.3±3.8
CNN 49.9±1.9 49.5±2.7 48.7±2.3 56.0±8.3 52.0±2.5 51.9±3.6

VecMap MLP 53.9±3.6 57.5±6.1 52.3±4.7 53.8±3.7 55.2±4.5 54.2±3.9
CNN 50.2±1.4 50.3±2.4 48.9±2.1 51.5±3.1 51.0±3.2 51.1±3.0

LASER MLP 68.3 59.5 62.1 71.6 56.6 58.9
XLM-R (base) MLP 71.4 53.3 54.2 54.2 57.4 54.6
XLM-R (large) MLP 96.4 53.6 54.8 60.4 58.3 59.2

Table 5: English-Sinhala Classifier Results: Precision, Recall, Macro F1 scores

Original Augmented
Embeddings Classifier Precision % Recall % F1 Score % Precision % Recall % F1 Score%

Proc-B MLP 54.6±3.6 55.0±3.5 53.3±3.4 61.6±2.5 54.9±3.0 54.7±4.3
CNN 54.3±2.4 53.2±1.9 53.1±2.2 58.2±3.2 52.2±1.0 51.1±1.9

VecMap MLP 54.3±3.6 54.6±3.4 53.0±3.4 63.6±1.6 55.7±2.4 56.4±2.1
CNN 53.9±2.4 53.4±2.3 53.4±2.3 56.0±2.1 53.7±1.0 54.0±1.2

XLM-R (base) MLP 67.1 51.0 47.9 70.6 59.2 61.3
XLM-R (large) MLP 79.7 51.7 49.2 55.1 54.4 54.7

Table 6: English-Odia Classifier Results: Precision, Recall, Macro F1 scores

4 Experiments

We report Macro Precision, Recall and F1-scores for the English classification task and the cross-lingual
classification tasks in Tables 4, 5 and 6 respectively (best scores for each section are underlined and
shown in bold). For macro averaging, we calculate precision, recall and F1 scores for both positive and
negative labels, then report their unweighted mean. Column Original refers to results using the original
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Language Dataset % of Urgent Samples
English Original 26.7%
English Original + Synthetic 18.5%
Sinhala Evaluation 7.7%
Odia Evaluation 16.1%

Table 7: Percentages of Urgent Samples

dataset that is human-annotated and 16K with Synthetic Data refers to results on larger datasets that are
generated with the method mentioned in 3.2.3. Since the evaluation datasets for all the tasks are small in
size, for each experiment setting that is cheap to reproduce, we report the mean and standard deviation
of 30 independent experiments to reduce inconsistencies and improve confidence. As a baseline, we
report results of a classifier which assigns a label randomly based on the label distribution in English
training data. We use scikit-learn (Pedregosa et al., 2011) for SVM and random forest classifiers and the
PyTorch platform 9 for the deep learning classifiers. For incorporating all the deep pre-trained contextual
models, our codebase heavily relies on the transformer implementations by Huggingface, which has the
advantage of switching to any future large-scale pre-trained models easily. 10

4.1 Analysis

For the English classifier, we observe the following:

• Deep pre-trained models that produce contextual representations of the tweets benefit the task of
urgency detection the most even in the presence of a limited amount of data. We believe this is
because these models generally produce representations that are better in quality and higher in di-
mension. We tried fine-tuning these pre-trained models and found that the performance deteriorates
evidently in the case where the down-stream task has a very small dataset (Goodfellow et al., 2016);

• In-domain embeddings (CrisisNLP) are consistently better than out-of-domain embeddings (fast-
Text) for English classification tasks;

• The semi-supervised approach of augmenting the dataset does not necessarily boost the performance
even further in the case when the pseudo-labels are generated by classifiers that are trained on
limited resources.

For cross-lingual classifiers, the following analysis can be concluded:

• Between Vecmap and Proc-B, we see similar performance across languages and classifiers. This
could be the case because they both have similar approaches: projection based approaches to gen-
erating cross-lingual embeddings.

• Adding synthetic data consistently improves the performances of the classifiers for Odia but not for
Sinhala (if we consider macro F1-score). We suspect that synthetic data might help the task if the
label distribution of the training dataset is similar to that of the evaluation dataset. The difference of
such urgent tweets ratio is larger in Sinhala (7.7% and 18.5%) than such difference in Odia (16.1%
and 18.5%), therefore producing results that are not any better in the presence of synthetic data. The
urgent tweet ratio is shown in Table 7 for reference;

• For the English-Sinhala task, we observe that the LASER-based classifier yields better performance.
This could be due to the fact that a) LASER uses bigger parallel corpora i.e. 796,000 sentences
b) LASER is a sentence-level contextual embedding, which is better than the order-independent
idf-weighted-averaging-based method of producing the sentence representations that the rest of the
classifiers adopt.

9https://pytorch.org/
10https://huggingface.co/transformers/



4701

Urgency Detection Task Precision % Recall % F1 Score %
English task 77.8 75.6 76.5
Sinhala task

(transferred from English) 61.2 69.3 63.5

Odia task
(transferred from English) 71.2 60.3 62.6

Table 8: Classification Performance of Ensemble Models

For both monolingual and cross-lingual classification, MLP-based classifiers with idf-weighted averag-
ing of the word embeddings are consistently better than CNN-based classifiers. We observe that when
the large amount of synthetic data is present, CNN classifiers have improvements that are more signifi-
cant than those of MLP classifiers, comparing to training them on the original dataset. After adding the
synthetic data, both CNN and MLP classifiers yield similar performance. Finally, ensemble by aggres-
sive voting strategy leads to better classification performance in both English and cross-lingual tasks, as
shown in Table 8.

5 Related Work

Crisis NLP 11 website provides social media datasets and classifiers that are about various disasters in
several languages, i.e. English, Spanish and French, which are all high resource languages. For low re-
source languages, due to very limited amount of data, transfer learning approaches must be adapted that
transfer a high-resource model to a low-resource language (Ruder et al., 2019; Chaudhary et al., 2019).
The work of Kejriwal and Zhou (2019) apply a manual feature based approach to transfer urgency labels
from English to several low resource languages combined with active learning to increase the amount of
labels. Recent successful techniques in transfer learning, however, use cross-lingual embeddings com-
bined with deep learning based classifiers. Cross-lingual embeddings map words in different languages
into same semantic space and among them, we use projection based approaches, i.e. VecMap and ProcB,
rather than parallel corpora based ones e.g. BiSkip (Luong et al., 2015) due to their superior perfor-
mance. This has been shown to work well for sentiment (Socher et al., 2013; Rasooli et al., 2018) and
emotion (Tafreshi and Diab, 2018). In addition, after the success of contextual language models such
as BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019) in many NLP tasks, their multilingual
versions became available i.e. Multilingual BERT (Devlin et al., 2019) and XLM-R (Conneau et al.,
2020) which we experimented with based on their availability for our languages. Their adaptation to
low resource settings, e.g. fine-tuning with small datasets, is not trivial and is not as reliable as in high
resource settings. As such, we show how this can be achieved with our experimental setup. Specifically,
we use a self-learning method by voting (Zhou and Goldman, 2004) to increase the size of the high
resource language dataset on unlabelled Crisis NLP tweets. We decide not to use tri-training (Zhi-Hua
Zhou and Ming Li, 2005; Ruder and Plank, 2018) due to the size of original English data despite the fact
that tri-training has shown good results in domain-shift NLP tasks.

6 Conclusion

In this study, we release an urgency dataset consisting of English tweets about natural crisis and their
urgency status. In addition, we release two evaluation datasets for urgency detection in Sinhala and Odia.
We train monolingual classifiers for English and cross-lingual classifiers for Sinhala and Odia that are
zero-shot learners. For the design of our classifiers, beside exploring different architectures, we adopt
different monolingual or cross-lingual embeddings that are either pre-trained or constructed by using
different methods. Due to limited amount of labeled data, we generate synthetic data to improve the
system performance, and ensemble classifiers to boost the performance even further. We conclude that if
synthetic data can be produced with high confidence, then it is helpful in transfer between domains that
have similar distribution of labels. Specifically for English urgency detection, the best performing clas-
sifier utilizes contextual features produced by pre-trained RoBERTa model and among non-contextual

11https://crisisnlp.qcri.org/
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embeddings, in-domain embeddings out-perform out-of-domain embeddings. For cross-lingual transfer,
classifiers that incorporate LASER features perform the best for transferring to Sinhala while XLM-R
features benefit the most in transferring knowledge of urgency detection to Odia. Finally, in the ab-
sence of pre-trained contextual embedding for a low resource language, we also demonstrate alternative
ways to achieve similar performance using cross-lingual embeddings constructed by projection based
approaches, i.e. VecMap and ProcB.
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